Skip to content

Depth-Aware Amodal Instance Segmentation Network

Notifications You must be signed in to change notification settings

JingchengYang4/DAIS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DAIS

Depth-Aware Amodal Instance Segmentation Network or DAISnet, utilizes depth information to predict amodal instance segmentation using occlusion relations and 3D shape prior. Depth is an inherent part to occlusion, it provides many useful information for amodal instance segmentation. Occluded objects are always deeper in depth than the occluder, and thus we can deduct which regions are possibly occluded and vice versa. DAISnet utilizes depth information extensively. Depth information can also be used to reconstruct occluded regions. 2D shapes with depth, arguably 2.5D or even 3D, offers feature rich information that could give insight to the position, orientation and region of the object in question. We used a codebook mechanism that uses said features to refine our amodal segmentation.

Installation

This project runs on Python 3.6

Install Pytorch 1.4.0 and CUDA 10.1

conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch

Install requirements

pip install -r requirements.txt

Install COCO API

pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI

Setup Detectron2

This is a heavily modified version of Detectron2, newer versions are not yet compatible.

Setup may require you to downgrade to GCC7 temporarily.

sudo apt-get install gcc-7 g++-7

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 60 --slave /usr/bin/g++ g++ /usr/bin/g++-7

sudo update-alternatives --config gcc

Build Detectron2

python -m pip install -e .

Data

wget 'GET DATASET FROM KITTI'
mv data_object_image_2.zip DAIS
cd DAIS
mkdir datasets/KINS
mv data_object_image_2.zip datasets/KINS
cd datasets/KINS
unzip data_object_image_2.zip
wget https://github.com/qqlu/Amodal-Instance-Segmentation-through-KINS-Dataset/raw/master/instances_train.json
wget https://github.com/qqlu/Amodal-Instance-Segmentation-through-KINS-Dataset/raw/master/instances_val.json

Depth prediction models:

cd depth/pytorch
mkdir models
cd models
wget https://cogaplex-bts.s3.ap-northeast-2.amazonaws.com/bts_eigen_v2_pytorch_densenet161.zip
unzip bts_eigen_v2_pytorch_densenet161.zip

Training

To train, run the following command

python tools/train_net.py --config-file configs/KINS-AmodalSegmentation/mask_rcnn_R_50_FPN_1x_parallel_CtRef_VAR_SPRef_SPRet_FM.yaml

To test BTS depth prediction

python bts_test.py arguments_test_eigen.txt

Visualization

DAISnet provides different ways for data visualization. For training visualization of proposal boxes, you can use DAIS_Rgb_IG_VIS.yaml for visualization.

For inference, run

python tools/visualize_json_results.py --input inference/coco_instances_amodal2_results.json --output output --dataset kins_val

About

Depth-Aware Amodal Instance Segmentation Network

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published