Enhancing Minority Classes by Mixing: An Adaptative Optimal Transport Approach for Long-tailed Classification (NeurIPS, 2023)
by Jintong Gao1, He Zhao2, Zhuo Li3,4, Dandan Guo1
1Jilin University, 2CSIRO's Data61, 3Shenzhen Research Institute of Big Data, 4The Chinese University of Hong Kong, Shenzhen
This is the official implementation of Enhancing Minority Classes by Mixing: An Adaptative Optimal Transport Approach for Long-tailed Classification in PyTorch.
All codes are written by Python 3.6 with
PyTorch >=1.5
torchvision >=0.6
TensorboardX 1.9
Numpy 1.17.3
POT 0.9.0
To train the model(s) in the paper, run this command:
CIFAR-10-LT (ERM-DRW + OTmix):
python cifar_train.py --dataset cifar10 --num_classes 10 --loss_type ERM --train_rule DRW --data_aug OT --gpu 0
CIFAR-100-LT (BALMS + OTmix):
python cifar_train.py --dataset cifar100 --num_classes 100 --loss_type BALMS --train_rule None --data_aug OT --gpu 0
ERM + OTmix:
python imagenet_train.py --root path --dataset Imagenet-LT --num_classes 1000 --loss_type ERM --train_rule None --epochs 200 --data_aug OT
DRW + OTmix:
python iNat18_train.py--root path --dataset iNat18 --num_classes 8142 --loss_type ERM --train_rule DRW --epochs 210 --data_aug OT
To evaluate my model, run:
CIFAR-LT
python test.py --root path --dataset cifar10 --arch resnet32 --num_classes 10 --gpu 0 --resume model_path
ImageNet-LT
python test.py --root path --dataset Imagenet-LT --arch resnet50 --num_classes 1000 --resume model_path
iNaturalist 2018
python test.py --root path --dataset iNat18 --arch resnet50 --num_classes 8142 --resume model_path
CIFAR-LT Google drive
ImageNet-LT Google drive
iNaturalist 2018 Google drive
If you find our paper and repo useful, please cite our paper.
@inproceedings{DBLP:conf/nips/GaoZLG23,
author = {Jintong Gao and He Zhao and Zhuo Li and Dandan Guo},
title = {Enhancing Minority Classes by Mixing: An Adaptative Optimal Transport Approach for Long-tailed Classification},
booktitle = {Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)},
year = {2023}
}
If you have any questions when running the code, please feel free to concat us by emailing
- Jintong Gao (gaojt20@mails.jlu.edu.cn)