Skip to content

A library for the simple visualization of different types of Spark NLP annotations.

License

Notifications You must be signed in to change notification settings

JohnSnowLabs/spark-nlp-display

Repository files navigation

spark-nlp-display

A library for the simple visualization of different types of Spark NLP annotations.

Supported Visualizations:

  • Dependency Parser
  • Named Entity Recognition
  • Entity Resolution
  • Relation Extraction
  • Assertion Status

Complete Tutorial

Open In Colab

https://github.com/JohnSnowLabs/spark-nlp-display/blob/main/tutorials/Spark_NLP_Display.ipynb

Requirements

  • spark-nlp
  • ipython
  • svgwrite
  • pandas
  • numpy

Installation

pip install spark-nlp-display

How to use

Databricks

For all modules, pass in the additional parameter "return_html=True" in the display function and use Databrick's function displayHTML() to render visualization as explained below:

from sparknlp_display import NerVisualizer

ner_vis = NerVisualizer()

## To set custom label colors:
ner_vis.set_label_colors({'LOC':'#800080', 'PER':'#77b5fe'}) #set label colors by specifying hex codes

pipeline_result = ner_light_pipeline.fullAnnotate(text) ##light pipeline
#pipeline_result = ner_full_pipeline.transform(df).collect()##full pipeline

vis_html = ner_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
                    label_col='entities', #specify the entity column
                    document_col='document', #specify the document column (default: 'document')
                    labels=['PER'], #only allow these labels to be displayed. (default: [] - all labels will be displayed)
                    return_html=True)

displayHTML(vis_html)

title

Jupyter

To save the visualization as html, provide the export file path: save_path='./export.html' for each visualizer.

Dependency Parser

from sparknlp_display import DependencyParserVisualizer

dependency_vis = DependencyParserVisualizer()

pipeline_result = dp_pipeline.fullAnnotate(text)
#pipeline_result = dp_full_pipeline.transform(df).collect()##full pipeline

dependency_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe.
                       pos_col = 'pos', #specify the pos column
                       dependency_col = 'dependency', #specify the dependency column
                       dependency_type_col = 'dependency_type', #specify the dependency type column
                       save_path='./export.html' # optional - to save viz as html. (default: None)
                       )

title

Named Entity Recognition

from sparknlp_display import NerVisualizer

ner_vis = NerVisualizer()

pipeline_result = ner_light_pipeline.fullAnnotate(text)
#pipeline_result = ner_full_pipeline.transform(df).collect()##full pipeline

ner_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
                    label_col='entities', #specify the entity column
                    document_col='document', #specify the document column (default: 'document')
                    labels=['PER'], #only allow these labels to be displayed. (default: [] - all labels will be displayed)
                    save_path='./export.html' # optional - to save viz as html. (default: None)
                    )

## To set custom label colors:
ner_vis.set_label_colors({'LOC':'#800080', 'PER':'#77b5fe'}) #set label colors by specifying hex codes

title

Entity Resolution

from sparknlp_display import EntityResolverVisualizer

er_vis = EntityResolverVisualizer()

pipeline_result = er_light_pipeline.fullAnnotate(text)

er_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
               label_col='entities', #specify the ner result column
               resolution_col = 'resolution',
               document_col='document', #specify the document column (default: 'document')
               save_path='./export.html' # optional - to save viz as html. (default: None)
               )

## To set custom label colors:
er_vis.set_label_colors({'TREATMENT':'#800080', 'PROBLEM':'#77b5fe'}) #set label colors by specifying hex codes

title

Relation Extraction

from sparknlp_display import RelationExtractionVisualizer

re_vis = RelationExtractionVisualizer()

pipeline_result = re_light_pipeline.fullAnnotate(text)

re_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
               relation_col = 'relations', #specify relations column
               document_col = 'document', #specify document column
               show_relations=True, #display relation names on arrows (default: True)
               save_path='./export.html' # optional - to save viz as html. (default: None)
               )

title

Assertion Status

from sparknlp_display import AssertionVisualizer

assertion_vis = AssertionVisualizer()

pipeline_result = ner_assertion_light_pipeline.fullAnnotate(text)

assertion_vis.display(pipeline_result[0], 
                      label_col = 'entities', #specify the ner result column
                      assertion_col = 'assertion', #specify assertion column
                      document_col = 'document', #specify the document column (default: 'document')
                      save_path='./export.html' # optional - to save viz as html. (default: None)
                      )
                      
## To set custom label colors:
assertion_vis.set_label_colors({'TREATMENT':'#008080', 'problem':'#800080'}) #set label colors by specifying hex codes

title

About

A library for the simple visualization of different types of Spark NLP annotations.

Resources

License

Stars

Watchers

Forks

Packages

No packages published