Skip to content

Commit

Permalink
Add model 2024-11-20-bert_embeddings_sec_bert_base_en (#14460)
Browse files Browse the repository at this point in the history
Co-authored-by: gadde5300 <gadde5300@gmail.com>
  • Loading branch information
jsl-models and gadde5300 authored Nov 20, 2024
1 parent 30b478f commit 9e3bea1
Showing 1 changed file with 105 additions and 0 deletions.
105 changes: 105 additions & 0 deletions docs/_posts/gadde5300/2024-11-20-bert_embeddings_sec_bert_base_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
---
layout: model
title: Financial English BERT Embeddings (Base)
author: John Snow Labs
name: bert_embeddings_sec_bert_base
date: 2024-11-20
tags: [financial, bert, en, embeddings, open_source, tensorflow]
task: Embeddings
language: en
edition: Spark NLP 5.5.1
spark_version: 3.0
supported: true
engine: tensorflow
annotator: BertEmbeddings
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Financial Pretrained BERT Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. `sec-bert-base` is a English model orginally trained by `nlpaueb`. This is the reference base model, what means it uses the same architecture as BERT-BASE trained on financial documents.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_embeddings_sec_bert_base_en_5.5.1_3.0_1732064992710.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_embeddings_sec_bert_base_en_5.5.1_3.0_1732064992710.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")

tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")

embeddings = BertEmbeddings.pretrained("bert_embeddings_sec_bert_base","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
```
```scala
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")

val embeddings = BertEmbeddings.pretrained("bert_embeddings_sec_bert_base","en")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))

val data = Seq("I love Spark NLP").toDF("text")

val result = pipeline.fit(data).transform(data)
```

{:.nlu-block}
```python
import nlu
nlu.load("en.embed.sec_bert_base").predict("""I love Spark NLP""")
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bert_embeddings_sec_bert_base|
|Compatibility:|Spark NLP 5.5.1+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[sentence, token]|
|Output Labels:|[bert]|
|Language:|en|
|Size:|409.4 MB|
|Case sensitive:|true|

## References

- https://huggingface.co/nlpaueb/sec-bert-base
- https://arxiv.org/abs/2203.06482
- http://nlp.cs.aueb.gr/

0 comments on commit 9e3bea1

Please sign in to comment.