Skip to content

Commit

Permalink
Add interface to use symmetric eigendecomposition with different lapa…
Browse files Browse the repository at this point in the history
…ck method (#49355)
  • Loading branch information
jaemolihm authored May 22, 2024
1 parent d9b528b commit b0d958e
Show file tree
Hide file tree
Showing 5 changed files with 91 additions and 17 deletions.
1 change: 1 addition & 0 deletions src/LinearAlgebra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -190,6 +190,7 @@ end
abstract type Algorithm end
struct DivideAndConquer <: Algorithm end
struct QRIteration <: Algorithm end
struct RobustRepresentations <: Algorithm end

# Pivoting strategies for matrix factorization algorithms.
abstract type PivotingStrategy end
Expand Down
5 changes: 0 additions & 5 deletions src/lapack.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5762,11 +5762,6 @@ syevr!(jobz::AbstractChar, range::AbstractChar, uplo::AbstractChar, A::AbstractM
Finds the eigenvalues (`jobz = N`) or eigenvalues and eigenvectors
(`jobz = V`) of a symmetric matrix `A`. If `uplo = U`, the upper triangle
of `A` is used. If `uplo = L`, the lower triangle of `A` is used.
Use the divide-and-conquer method, instead of the QR iteration used by
`syev!` or multiple relatively robust representations used by `syevr!`.
See James W. Demmel et al, SIAM J. Sci. Comput. 30, 3, 1508 (2008) for
a comparison of the accuracy and performatce of different methods.
"""
syevd!(jobz::AbstractChar, uplo::AbstractChar, A::AbstractMatrix)

Expand Down
5 changes: 3 additions & 2 deletions src/svd.jl
Original file line number Diff line number Diff line change
Expand Up @@ -149,8 +149,9 @@ and `V` is ``N \\times N``, while in the thin factorization `U` is ``M
\\times K`` and `V` is ``N \\times K``, where ``K = \\min(M,N)`` is the
number of singular values.
If `alg = DivideAndConquer()` a divide-and-conquer algorithm is used to calculate the SVD.
Another (typically slower but more accurate) option is `alg = QRIteration()`.
`alg` specifies which algorithm and LAPACK method to use for SVD:
- `alg = DivideAndConquer()` (default): Calls `LAPACK.gesdd!`.
- `alg = QRIteration()`: Calls `LAPACK.gesvd!` (typically slower but more accurate) .
!!! compat "Julia 1.3"
The `alg` keyword argument requires Julia 1.3 or later.
Expand Down
81 changes: 71 additions & 10 deletions src/symmetriceigen.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,13 +5,19 @@
eigencopy_oftype(A::Hermitian, S) = Hermitian(copytrito!(similar(parent(A), S, size(A)), A.data, A.uplo), sym_uplo(A.uplo))
eigencopy_oftype(A::Symmetric, S) = Symmetric(copytrito!(similar(parent(A), S, size(A)), A.data, A.uplo), sym_uplo(A.uplo))

# Eigensolvers for symmetric and Hermitian matrices
eigen!(A::RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix}; sortby::Union{Function,Nothing}=nothing) =
Eigen(sorteig!(LAPACK.syevr!('V', 'A', A.uplo, A.data, 0.0, 0.0, 0, 0, -1.0)..., sortby)...)
default_eigen_alg(A) = DivideAndConquer()

function eigen(A::RealHermSymComplexHerm; sortby::Union{Function,Nothing}=nothing)
S = eigtype(eltype(A))
eigen!(eigencopy_oftype(A, S), sortby=sortby)
# Eigensolvers for symmetric and Hermitian matrices
function eigen!(A::RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix}, alg::Algorithm = default_eigen_alg(A); sortby::Union{Function,Nothing}=nothing)
if alg === DivideAndConquer()
Eigen(sorteig!(LAPACK.syevd!('V', A.uplo, A.data)..., sortby)...)
elseif alg === QRIteration()
Eigen(sorteig!(LAPACK.syev!('V', A.uplo, A.data)..., sortby)...)
elseif alg === RobustRepresentations()
Eigen(sorteig!(LAPACK.syevr!('V', 'A', A.uplo, A.data, 0.0, 0.0, 0, 0, -1.0)..., sortby)...)
else
throw(ArgumentError("Unsupported value for `alg` keyword."))
end
end
function eigen(A::RealHermSymComplexHerm{Float16}; sortby::Union{Function,Nothing}=nothing)
S = eigtype(eltype(A))
Expand All @@ -21,6 +27,36 @@ function eigen(A::RealHermSymComplexHerm{Float16}; sortby::Union{Function,Nothin
return Eigen(values, vectors)
end

"""
eigen(A::Union{Hermitian, Symmetric}, alg::Algorithm = default_eigen_alg(A)) -> Eigen
Compute the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F`
which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the
matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.)
Iterating the decomposition produces the components `F.values` and `F.vectors`.
`alg` specifies which algorithm and LAPACK method to use for eigenvalue decomposition:
- `alg = DivideAndConquer()` (default): Calls `LAPACK.syevd!`.
- `alg = QRIteration()`: Calls `LAPACK.syev!`.
- `alg = RobustRepresentations()`: Multiple relatively robust representations method, Calls `LAPACK.syevr!`.
See James W. Demmel et al, SIAM J. Sci. Comput. 30, 3, 1508 (2008) for
a comparison of the accuracy and performance of different algorithms.
The default `alg` used may change in the future.
!!! compat "Julia 1.12"
The `alg` keyword argument requires Julia 1.12 or later.
The following functions are available for `Eigen` objects: [`inv`](@ref), [`det`](@ref), and [`isposdef`](@ref).
"""
function eigen(A::RealHermSymComplexHerm, alg::Algorithm = default_eigen_alg(A); sortby::Union{Function,Nothing}=nothing)
S = eigtype(eltype(A))
eigen!(eigencopy_oftype(A, S), alg; sortby)
end


eigen!(A::RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix}, irange::UnitRange) =
Eigen(LAPACK.syevr!('V', 'I', A.uplo, A.data, 0.0, 0.0, irange.start, irange.stop, -1.0)...)

Expand Down Expand Up @@ -71,17 +107,42 @@ function eigen(A::RealHermSymComplexHerm, vl::Real, vh::Real)
eigen!(eigencopy_oftype(A, S), vl, vh)
end

function eigvals!(A::RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix}; sortby::Union{Function,Nothing}=nothing)
vals = LAPACK.syevr!('N', 'A', A.uplo, A.data, 0.0, 0.0, 0, 0, -1.0)[1]

function eigvals!(A::RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix}, alg::Algorithm = default_eigen_alg(A); sortby::Union{Function,Nothing}=nothing)
vals::Vector{real(eltype(A))} = if alg === DivideAndConquer()
LAPACK.syevd!('N', A.uplo, A.data)
elseif alg === QRIteration()
LAPACK.syev!('N', A.uplo, A.data)
elseif alg === RobustRepresentations()
LAPACK.syevr!('N', 'A', A.uplo, A.data, 0.0, 0.0, 0, 0, -1.0)[1]
else
throw(ArgumentError("Unsupported value for `alg` keyword."))
end
!isnothing(sortby) && sort!(vals, by=sortby)
return vals
end

function eigvals(A::RealHermSymComplexHerm; sortby::Union{Function,Nothing}=nothing)
"""
eigvals(A::Union{Hermitian, Symmetric}, alg::Algorithm = default_eigen_alg(A))) -> values
Return the eigenvalues of `A`.
`alg` specifies which algorithm and LAPACK method to use for eigenvalue decomposition:
- `alg = DivideAndConquer()` (default): Calls `LAPACK.syevd!`.
- `alg = QRIteration()`: Calls `LAPACK.syev!`.
- `alg = RobustRepresentations()`: Multiple relatively robust representations method, Calls `LAPACK.syevr!`.
See James W. Demmel et al, SIAM J. Sci. Comput. 30, 3, 1508 (2008) for
a comparison of the accuracy and performance of different methods.
The default `alg` used may change in the future.
"""
function eigvals(A::RealHermSymComplexHerm, alg::Algorithm = default_eigen_alg(A); sortby::Union{Function,Nothing}=nothing)
S = eigtype(eltype(A))
eigvals!(eigencopy_oftype(A, S), sortby=sortby)
eigvals!(eigencopy_oftype(A, S), alg; sortby)
end


"""
eigvals!(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> values
Expand Down
16 changes: 16 additions & 0 deletions test/symmetric.jl
Original file line number Diff line number Diff line change
Expand Up @@ -720,6 +720,22 @@ end
end
end

@testset "eigendecomposition Algorithms" begin
using LinearAlgebra: DivideAndConquer, QRIteration, RobustRepresentations
for T in (Float64, ComplexF64, Float32, ComplexF32)
n = 4
A = T <: Real ? Symmetric(randn(T, n, n)) : Hermitian(randn(T, n, n))
d, v = eigen(A)
for alg in (DivideAndConquer(), QRIteration(), RobustRepresentations())
@test (@inferred eigvals(A, alg)) d
d2, v2 = @inferred eigen(A, alg)
@test d2 d
@test A * v2 v2 * Diagonal(d2)
end
end
end

const BASE_TEST_PATH = joinpath(Sys.BINDIR, "..", "share", "julia", "test")
isdefined(Main, :ImmutableArrays) || @eval Main include(joinpath($(BASE_TEST_PATH), "testhelpers", "ImmutableArrays.jl"))
using .Main.ImmutableArrays

Expand Down

0 comments on commit b0d958e

Please sign in to comment.