-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
porting some code for complex lgamma, beta, eta, and zeta functions
- Loading branch information
1 parent
ac1ca5d
commit 4675b10
Showing
1 changed file
with
165 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
function angle_restrict_symm(theta) | ||
P1 = 4 * 7.8539812564849853515625e-01 | ||
P2 = 4 * 3.7748947079307981766760e-08 | ||
P3 = 4 * 2.6951514290790594840552e-15 | ||
|
||
y = 2*floor(theta/(2*pi)) | ||
r = ((theta - y*P1) - y*P2) - y*P3 | ||
if (r > pi) | ||
r -= (2*pi) | ||
end | ||
return r | ||
end | ||
|
||
const clg_coeff = [76.18009172947146, | ||
-86.50532032941677, | ||
24.01409824083091, | ||
-1.231739572450155, | ||
0.1208650973866179e-2, | ||
-0.5395239384953e-5] | ||
|
||
function clgamma_lanczos(z) | ||
sqrt2pi = 2.5066282746310005 | ||
|
||
y = x = z | ||
temp = x + 5.5 | ||
zz = log(temp) | ||
zz = zz * (x+0.5) | ||
temp -= zz | ||
ser = complex(1.000000000190015, 0) | ||
for j=1:6 | ||
y += 1.0 | ||
zz = clg_coeff[j]/y | ||
ser += zz | ||
end | ||
zz = sqrt2pi*ser / x | ||
return log(zz) - temp | ||
end | ||
|
||
function lgamma(z::Complex) | ||
if real(z) <= 0.5 | ||
a = clgamma_lanczos(1-z) | ||
b = log(sin(pi * z)) | ||
logpi = 1.14472988584940017 | ||
z = logpi - b - a | ||
else | ||
z = clgamma_lanczos(z) | ||
end | ||
complex(real(z), angle_restrict_symm(imag(z))) | ||
end | ||
|
||
beta(x::Number, w::Number) = exp(lgamma(x)+lgamma(w)-lgamma(x+w)) | ||
|
||
const eta_coeffs = | ||
[.99999999999999999997, | ||
-.99999999999999999821, | ||
.99999999999999994183, | ||
-.99999999999999875788, | ||
.99999999999998040668, | ||
-.99999999999975652196, | ||
.99999999999751767484, | ||
-.99999999997864739190, | ||
.99999999984183784058, | ||
-.99999999897537734890, | ||
.99999999412319859549, | ||
-.99999996986230482845, | ||
.99999986068828287678, | ||
-.99999941559419338151, | ||
.99999776238757525623, | ||
-.99999214148507363026, | ||
.99997457616475604912, | ||
-.99992394671207596228, | ||
.99978893483826239739, | ||
-.99945495809777621055, | ||
.99868681159465798081, | ||
-.99704078337369034566, | ||
.99374872693175507536, | ||
-.98759401271422391785, | ||
.97682326283354439220, | ||
-.95915923302922997013, | ||
.93198380256105393618, | ||
-.89273040299591077603, | ||
.83945793215750220154, | ||
-.77148960729470505477, | ||
.68992761745934847866, | ||
-.59784149990330073143, | ||
.50000000000000000000, | ||
-.40215850009669926857, | ||
.31007238254065152134, | ||
-.22851039270529494523, | ||
.16054206784249779846, | ||
-.10726959700408922397, | ||
.68016197438946063823e-1, | ||
-.40840766970770029873e-1, | ||
.23176737166455607805e-1, | ||
-.12405987285776082154e-1, | ||
.62512730682449246388e-2, | ||
-.29592166263096543401e-2, | ||
.13131884053420191908e-2, | ||
-.54504190222378945440e-3, | ||
.21106516173760261250e-3, | ||
-.76053287924037718971e-4, | ||
.25423835243950883896e-4, | ||
-.78585149263697370338e-5, | ||
.22376124247437700378e-5, | ||
-.58440580661848562719e-6, | ||
.13931171712321674741e-6, | ||
-.30137695171547022183e-7, | ||
.58768014045093054654e-8, | ||
-.10246226511017621219e-8, | ||
.15816215942184366772e-9, | ||
-.21352608103961806529e-10, | ||
.24823251635643084345e-11, | ||
-.24347803504257137241e-12, | ||
.19593322190397666205e-13, | ||
-.12421162189080181548e-14, | ||
.58167446553847312884e-16, | ||
-.17889335846010823161e-17, | ||
.27105054312137610850e-19] | ||
|
||
function eta(z) | ||
if z == 0 | ||
return complex(0.5) | ||
end | ||
re, im = reim(z) | ||
if im==0 && re < 0 && integer_valued(re) && re==round(re/2)*2 | ||
return complex(0.0) | ||
end | ||
reflect = false | ||
if re < 0.5 | ||
re = 1-re | ||
im = -im | ||
reflect = true | ||
end | ||
dn = float64(length(eta_coeffs)) | ||
sr = 0.0 | ||
si = 0.0 | ||
for n = length(eta_coeffs):-1:1 | ||
p = (dn^-re) * eta_coeffs[n] | ||
lnn = -im * log(dn) | ||
sr += p * cos(lnn) | ||
si += p * sin(lnn) | ||
dn -= 1 | ||
end | ||
if reflect | ||
z = complex(re, im) | ||
b = 2.0 - 2.0^complex(re+1,im) | ||
|
||
f = 2.0^z - 2 | ||
piz = pi^z | ||
|
||
b = b/f/piz | ||
|
||
return complex(sr,si) * exp(lgamma(z)) * b * cos(pi/2*z) | ||
end | ||
return complex(sr, si) | ||
end | ||
|
||
eta(x::Real) = real(eta(complex(float64(x)))) | ||
|
||
function zeta(z::Complex) | ||
zz = 2.0^z | ||
eta(z) * zz/(zz-2) | ||
end | ||
|
||
zeta(x::Real) = real(zeta(complex(float64(x)))) |