Skip to content

Commit

Permalink
Adjust initialization in maximum and minimum (version 2) (#28116)
Browse files Browse the repository at this point in the history
* Adjust initialization in maximum and minimum

Fixes #27836

* Reduce to first element in index range for OffsetArrays

* Adjust mapreduce to use first element in offset range as well.

Adjust tests

* Avoid defining global Areduc variable in reducedim tests

* Add comment in mapslices to explain the wrapping of scalars

* Change reduced_index for Slices and add test for previously failing
maximum of OffsetArray example

* Add checks that reductions along dimensions are inferred
  • Loading branch information
andreasnoack authored Jul 16, 2018
1 parent 199b74e commit 5b4d203
Show file tree
Hide file tree
Showing 6 changed files with 82 additions and 53 deletions.
7 changes: 6 additions & 1 deletion base/abstractarray.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1926,7 +1926,12 @@ function mapslices(f, A::AbstractArray; dims)
Rsize = copy(dimsA)
# TODO: maybe support removing dimensions
if !isa(r1, AbstractArray) || ndims(r1) == 0
r1 = [r1]
# If the result of f on a single slice is a scalar then we add singleton
# dimensions. When adding the dimensions, we have to respect the
# index type of the input array (e.g. in the case of OffsetArrays)
tmp = similar(Aslice, typeof(r1), reduced_indices(Aslice, 1:ndims(Aslice)))
tmp[firstindex(tmp)] = r1
r1 = tmp
end
nextra = max(0, length(dims)-ndims(r1))
if eltype(Rsize) == Int
Expand Down
75 changes: 47 additions & 28 deletions base/reducedim.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,28 +3,41 @@
## Functions to compute the reduced shape

# for reductions that expand 0 dims to 1
reduced_index(i::OneTo) = OneTo(1)
reduced_index(i::Slice) = first(i):first(i)
reduced_index(i::AbstractUnitRange) =
throw(ArgumentError(
"""
No method is implemented for reducing index range of type $typeof(i). Please implement
reduced_index for this index type or report this as an issue.
"""
))
reduced_indices(a::AbstractArray, region) = reduced_indices(axes(a), region)

# for reductions that keep 0 dims as 0
reduced_indices0(a::AbstractArray, region) = reduced_indices0(axes(a), region)

function reduced_indices(inds::Indices{N}, d::Int, rd::AbstractUnitRange) where N
function reduced_indices(inds::Indices{N}, d::Int) where N
d < 1 && throw(ArgumentError("dimension must be ≥ 1, got $d"))
if d == 1
return (oftype(inds[1], rd), tail(inds)...)
return (reduced_index(inds[1]), tail(inds)...)
elseif 1 < d <= N
return tuple(inds[1:d-1]..., oftype(inds[d], rd), inds[d+1:N]...)::typeof(inds)
return tuple(inds[1:d-1]..., oftype(inds[d], reduced_index(inds[d])), inds[d+1:N]...)::typeof(inds)
else
return inds
end
end
reduced_indices(inds::Indices, d::Int) = reduced_indices(inds, d, OneTo(1))

function reduced_indices0(inds::Indices{N}, d::Int) where N
d < 1 && throw(ArgumentError("dimension must be ≥ 1, got $d"))
if d <= N
ind = inds[d]
return reduced_indices(inds, d, (isempty(ind) ? ind : OneTo(1)))
rd = isempty(ind) ? ind : reduced_index(inds[d])
if d == 1
return (rd, tail(inds)...)
else
return tuple(inds[1:d-1]..., oftype(inds[d], rd), inds[d+1:N]...)::typeof(inds)
end
else
return inds
end
Expand All @@ -38,7 +51,7 @@ function reduced_indices(inds::Indices{N}, region) where N
if d < 1
throw(ArgumentError("region dimension(s) must be ≥ 1, got $d"))
elseif d <= N
rinds[d] = oftype(rinds[d], OneTo(1))
rinds[d] = reduced_index(rinds[d])
end
end
tuple(rinds...)::typeof(inds)
Expand All @@ -53,7 +66,7 @@ function reduced_indices0(inds::Indices{N}, region) where N
throw(ArgumentError("region dimension(s) must be ≥ 1, got $d"))
elseif d <= N
rind = rinds[d]
rinds[d] = oftype(rind, (isempty(rind) ? rind : OneTo(1)))
rinds[d] = isempty(rind) ? rind : reduced_index(rind)
end
end
tuple(rinds...)::typeof(inds)
Expand All @@ -79,25 +92,6 @@ end
reducedim_initarray(A::AbstractArray, region, init, ::Type{R}) where {R} = fill!(similar(A,R,reduced_indices(A,region)), init)
reducedim_initarray(A::AbstractArray, region, init::T) where {T} = reducedim_initarray(A, region, init, T)

function reducedim_initarray0(A::AbstractArray{T}, region, f, ops) where T
ri = reduced_indices0(A, region)
if isempty(A)
if prod(length, reduced_indices(A, region)) != 0
reducedim_initarray0_empty(A, region, f, ops) # ops over empty slice of A
else
R = f == identity ? T : Core.Compiler.return_type(f, (T,))
similar(A, R, ri)
end
else
R = f == identity ? T : typeof(f(first(A)))
si = similar(A, R, ri)
mapfirst!(f, si, A)
end
end

reducedim_initarray0_empty(A::AbstractArray, region, f, ops) = mapslices(x->ops(f.(x)), A, dims = region)
reducedim_initarray0_empty(A::AbstractArray, region,::typeof(identity), ops) = mapslices(ops, A, dims = region)

# TODO: better way to handle reducedim initialization
#
# The current scheme is basically following Steven G. Johnson's original implementation
Expand All @@ -124,8 +118,33 @@ function _reducedim_init(f, op, fv, fop, A, region)
return reducedim_initarray(A, region, z, Tr)
end

reducedim_init(f, op::typeof(max), A::AbstractArray{T}, region) where {T} = reducedim_initarray0(A, region, f, maximum)
reducedim_init(f, op::typeof(min), A::AbstractArray{T}, region) where {T} = reducedim_initarray0(A, region, f, minimum)
# initialization when computing minima and maxima requires a little care
for (f1, f2, initval) in ((:min, :max, :Inf), (:max, :min, :(-Inf)))
@eval function reducedim_init(f, op::typeof($f1), A::AbstractArray, region)
# First compute the reduce indices. This will throw an ArgumentError
# if any region is invalid
ri = reduced_indices(A, region)

# Next, throw if reduction is over a region with length zero
any(i -> isempty(axes(A, i)), region) && _empty_reduce_error()

# Make a view of the first slice of the region
A1 = view(A, ri...)

if isempty(A1)
# If the slice is empty just return non-view version as the initial array
return copy(A1)
else
# otherwise use the min/max of the first slice as initial value
v0 = mapreduce(f, $f2, A1)

# but NaNs need to be avoided as intial values
v0 = v0 != v0 ? typeof(v0)($initval) : v0

return reducedim_initarray(A, region, v0)
end
end
end
reducedim_init(f::Union{typeof(abs),typeof(abs2)}, op::typeof(max), A::AbstractArray{T}, region) where {T} =
reducedim_initarray(A, region, zero(f(zero(T))))

Expand Down
2 changes: 0 additions & 2 deletions stdlib/SparseArrays/src/sparsematrix.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1616,8 +1616,6 @@ end
# non-trivial, so use Arrays for output
Base.reducedim_initarray(A::SparseMatrixCSC, region, v0, ::Type{R}) where {R} =
fill(v0, Base.reduced_indices(A,region))
Base.reducedim_initarray0(A::SparseMatrixCSC, region, v0, ::Type{R}) where {R} =
fill(v0, Base.reduced_indices0(A,region))

# General mapreduce
function _mapreducezeros(f, op, ::Type{T}, nzeros::Int, v0) where T
Expand Down
3 changes: 3 additions & 0 deletions stdlib/SparseArrays/test/higherorderfns.jl
Original file line number Diff line number Diff line change
Expand Up @@ -628,5 +628,8 @@ end
@test Diagonal(spzeros(5)) \ view(rand(10), 1:5) == [Inf,Inf,Inf,Inf,Inf]
end

@testset "Issue #27836" begin
@test minimum(sparse([1, 2], [1, 2], ones(Int32, 2)), dims = 1) isa Matrix
end

end # module
21 changes: 13 additions & 8 deletions test/offsetarray.jl
Original file line number Diff line number Diff line change
Expand Up @@ -213,7 +213,7 @@ targets2 = ["(1.0, 1.0)",
"([1.0], [1.0])",
"([1.0], [1.0])",
"([1.0], [1.0])"]
for n = 0:4
@testset "printing of OffsetArray with n=$n" for n = 0:4
a = OffsetArray(fill(1.,ntuple(d->1,n)), ntuple(identity,n))
show(IOContext(io, :limit => true), MIME("text/plain"), a)
@test String(take!(io)) == targets1[n+1]
Expand Down Expand Up @@ -362,9 +362,9 @@ A = OffsetArray(rand(4,4), (-3,5))
@test maximum(A) == maximum(parent(A))
@test minimum(A) == minimum(parent(A))
@test extrema(A) == extrema(parent(A))
@test maximum(A, dims=1) == OffsetArray(maximum(parent(A), dims=1), (0,A.offsets[2]))
@test maximum(A, dims=2) == OffsetArray(maximum(parent(A), dims=2), (A.offsets[1],0))
@test maximum(A, dims=1:2) == maximum(parent(A), dims=1:2)
@test maximum(A, dims=1) == OffsetArray(maximum(parent(A), dims=1), A.offsets)
@test maximum(A, dims=2) == OffsetArray(maximum(parent(A), dims=2), A.offsets)
@test maximum(A, dims=1:2) == OffsetArray(maximum(parent(A), dims=1:2), A.offsets)
C = similar(A)
cumsum!(C, A, dims=1)
@test parent(C) == cumsum(parent(A), dims=1)
Expand Down Expand Up @@ -396,11 +396,11 @@ I = findall(!iszero, z)
@test findall(x->x==0, h) == [2]
@test mean(A_3_3) == median(A_3_3) == 5
@test mean(x->2x, A_3_3) == 10
@test mean(A_3_3, dims=1) == median(A_3_3, dims=1) == OffsetArray([2 5 8], (0,A_3_3.offsets[2]))
@test mean(A_3_3, dims=2) == median(A_3_3, dims=2) == OffsetArray(reshape([4,5,6],(3,1)), (A_3_3.offsets[1],0))
@test mean(A_3_3, dims=1) == median(A_3_3, dims=1) == OffsetArray([2 5 8], A_3_3.offsets)
@test mean(A_3_3, dims=2) == median(A_3_3, dims=2) == OffsetArray(reshape([4,5,6],(3,1)), A_3_3.offsets)
@test var(A_3_3) == 7.5
@test std(A_3_3, dims=1) == OffsetArray([1 1 1], (0,A_3_3.offsets[2]))
@test std(A_3_3, dims=2) == OffsetArray(reshape([3,3,3], (3,1)), (A_3_3.offsets[1],0))
@test std(A_3_3, dims=1) == OffsetArray([1 1 1], A_3_3.offsets)
@test std(A_3_3, dims=2) == OffsetArray(reshape([3,3,3], (3,1)), A_3_3.offsets)
@test sum(OffsetArray(fill(1,3000), -1000)) == 3000

@test norm(v) norm(parent(v))
Expand Down Expand Up @@ -484,3 +484,8 @@ module SimilarUR
@test_throws MethodError similar(a, Float64, (ur,))
@test_throws MethodError similar(a, (2.0,3.0))
end

@testset "Issue 28101" begin
A = OffsetArray(reshape(16:-1:1, (4, 4)), (-3,5))
@test maximum(A, dims=1) == OffsetArray(maximum(parent(A), dims=1), A.offsets)
end
27 changes: 13 additions & 14 deletions test/reducedim.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,11 +17,10 @@ safe_sumabs2(A::Array{T}, region) where {T} = safe_mapslices(sum, abs2.(A), regi
safe_maxabs(A::Array{T}, region) where {T} = safe_mapslices(maximum, abs.(A), region)
safe_minabs(A::Array{T}, region) where {T} = safe_mapslices(minimum, abs.(A), region)

Areduc = rand(3, 4, 5, 6)
for region in Any[
@testset "test reductions over region: $region" for region in Any[
1, 2, 3, 4, 5, (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4),
(1, 2, 3), (1, 3, 4), (2, 3, 4), (1, 2, 3, 4)]
# println("region = $region")
Areduc = rand(3, 4, 5, 6)
r = fill(NaN, map(length, Base.reduced_indices(axes(Areduc), region)))
@test sum!(r, Areduc) safe_sum(Areduc, region)
@test prod!(r, Areduc) safe_prod(Areduc, region)
Expand Down Expand Up @@ -51,14 +50,14 @@ for region in Any[
fill!(r, -1.5)
@test minimum!(abs, r, Areduc, init=false) fill!(r2, -1.5)

@test sum(Areduc, dims=region) safe_sum(Areduc, region)
@test prod(Areduc, dims=region) safe_prod(Areduc, region)
@test maximum(Areduc, dims=region) safe_maximum(Areduc, region)
@test minimum(Areduc, dims=region) safe_minimum(Areduc, region)
@test sum(abs, Areduc, dims=region) safe_sumabs(Areduc, region)
@test sum(abs2, Areduc, dims=region) safe_sumabs2(Areduc, region)
@test maximum(abs, Areduc, dims=region) safe_maxabs(Areduc, region)
@test minimum(abs, Areduc, dims=region) safe_minabs(Areduc, region)
@test @inferred(sum(Areduc, dims=region)) safe_sum(Areduc, region)
@test @inferred(prod(Areduc, dims=region)) safe_prod(Areduc, region)
@test @inferred(maximum(Areduc, dims=region)) safe_maximum(Areduc, region)
@test @inferred(minimum(Areduc, dims=region)) safe_minimum(Areduc, region)
@test @inferred(sum(abs, Areduc, dims=region)) safe_sumabs(Areduc, region)
@test @inferred(sum(abs2, Areduc, dims=region)) safe_sumabs2(Areduc, region)
@test @inferred(maximum(abs, Areduc, dims=region)) safe_maxabs(Areduc, region)
@test @inferred(minimum(abs, Areduc, dims=region)) safe_minabs(Areduc, region)
end

# Test reduction along first dimension; this is special-cased for
Expand Down Expand Up @@ -330,10 +329,10 @@ end
@test sum(Any[1 2;3 4], dims=1) == [4 6]
@test sum(Vector{Int}[[1,2],[4,3]], dims=1)[1] == [5,5]

# issue #10461
Areduc = rand(3, 4, 5, 6)
for region in Any[-1, 0, (-1, 2), [0, 1], (1,-2,3), [0 1;
@testset "Issue #10461. region=$region" for region in Any[-1, 0, (-1, 2), [0, 1], (1,-2,3), [0 1;
2 3], "hello"]
Areduc = rand(3, 4, 5, 6)

@test_throws ArgumentError sum(Areduc, dims=region)
@test_throws ArgumentError prod(Areduc, dims=region)
@test_throws ArgumentError maximum(Areduc, dims=region)
Expand Down

0 comments on commit 5b4d203

Please sign in to comment.