Skip to content

Commit

Permalink
Automatically up-convert eltype in SPQR (#33601)
Browse files Browse the repository at this point in the history
  • Loading branch information
dkarrasch authored Nov 12, 2019
1 parent beee107 commit 7358173
Showing 1 changed file with 39 additions and 24 deletions.
63 changes: 39 additions & 24 deletions stdlib/SuiteSparse/src/spqr.jl
Original file line number Diff line number Diff line change
Expand Up @@ -143,36 +143,19 @@ Matrix{T}(Q::QRSparseQ) where {T} = lmul!(Q, Matrix{T}(I, size(Q, 1), min(size(Q
_default_tol(A::SparseMatrixCSC) =
20*sum(size(A))*eps(real(eltype(A)))*maximum(norm(view(A, :, i)) for i in 1:size(A, 2))

function LinearAlgebra.qr(A::SparseMatrixCSC{Tv}; tol = _default_tol(A)) where {Tv <: CHOLMOD.VTypes}
R = Ref{Ptr{CHOLMOD.C_Sparse{Tv}}}()
E = Ref{Ptr{CHOLMOD.SuiteSparse_long}}()
H = Ref{Ptr{CHOLMOD.C_Sparse{Tv}}}()
HPinv = Ref{Ptr{CHOLMOD.SuiteSparse_long}}()
HTau = Ref{Ptr{CHOLMOD.C_Dense{Tv}}}(C_NULL)

# SPQR doesn't accept symmetric matrices so we explicitly set the stype
r, p, hpinv = _qr!(ORDERING_DEFAULT, tol, 0, 0, Sparse(A, 0),
C_NULL, C_NULL, C_NULL, C_NULL,
R, E, H, HPinv, HTau)

R_ = SparseMatrixCSC(Sparse(R[]))
return QRSparse(SparseMatrixCSC(Sparse(H[])),
vec(Array(CHOLMOD.Dense(HTau[]))),
SparseMatrixCSC(min(size(A)...),
size(R_, 2),
getcolptr(R_),
rowvals(R_),
nonzeros(R_)),
p, hpinv)
end

"""
qr(A) -> QRSparse
Compute the `QR` factorization of a sparse matrix `A`. Fill-reducing row and column permutations
are used such that `F.R = F.Q'*A[F.prow,F.pcol]`. The main application of this type is to
solve least squares or underdetermined problems with [`\\`](@ref). The function calls the C library SPQR.
!!! note
`qr(A::SparseMatrixCSC)` uses the SPQR library that is part of SuiteSparse.
As this library only supports sparse matrices with [`Float64`](@ref) or
`ComplexF64` elements, as of Julia v1.4 `qr` converts `A` into a copy that is
of type `SparseMatrixCSC{Float64}` or `SparseMatrixCSC{ComplexF64}` as appropriate.
# Examples
```jldoctest
julia> A = sparse([1,2,3,4], [1,1,2,2], [1.0,1.0,1.0,1.0])
Expand Down Expand Up @@ -206,7 +189,39 @@ Column permutation:
2
```
"""
LinearAlgebra.qr(A::SparseMatrixCSC; tol = _default_tol(A)) = qr(A, Val{true}, tol = tol)
function LinearAlgebra.qr(A::SparseMatrixCSC{Tv}; tol=_default_tol(A)) where {Tv <: CHOLMOD.VTypes}
R = Ref{Ptr{CHOLMOD.C_Sparse{Tv}}}()
E = Ref{Ptr{CHOLMOD.SuiteSparse_long}}()
H = Ref{Ptr{CHOLMOD.C_Sparse{Tv}}}()
HPinv = Ref{Ptr{CHOLMOD.SuiteSparse_long}}()
HTau = Ref{Ptr{CHOLMOD.C_Dense{Tv}}}(C_NULL)

# SPQR doesn't accept symmetric matrices so we explicitly set the stype
r, p, hpinv = _qr!(ORDERING_DEFAULT, tol, 0, 0, Sparse(A, 0),
C_NULL, C_NULL, C_NULL, C_NULL,
R, E, H, HPinv, HTau)

R_ = SparseMatrixCSC(Sparse(R[]))
return QRSparse(SparseMatrixCSC(Sparse(H[])),
vec(Array(CHOLMOD.Dense(HTau[]))),
SparseMatrixCSC(min(size(A)...),
size(R_, 2),
getcolptr(R_),
rowvals(R_),
nonzeros(R_)),
p, hpinv)
end
LinearAlgebra.qr(A::SparseMatrixCSC{<:Union{Float16,Float32}}; tol=_default_tol(A)) =
qr(convert(SparseMatrixCSC{Float64}, A); tol=tol)
LinearAlgebra.qr(A::SparseMatrixCSC{<:Union{ComplexF16,ComplexF32}}; tol=_default_tol(A)) =
qr(convert(SparseMatrixCSC{ComplexF64}, A); tol=tol)
LinearAlgebra.qr(A::Union{SparseMatrixCSC{T},SparseMatrixCSC{Complex{T}}};
tol=_default_tol(A)) where {T<:AbstractFloat} =
throw(ArgumentError(string("matrix type ", typeof(A), "not supported. ",
"Try qr(convert(SparseMatrixCSC{Float64/ComplexF64,Int}, A)) for ",
"sparse floating point QR using SPQR or qr(Array(A)) for generic ",
"dense QR.")))
LinearAlgebra.qr(A::SparseMatrixCSC; tol=_default_tol(A)) = qr(float(A); tol=tol)

function LinearAlgebra.lmul!(Q::QRSparseQ, A::StridedVecOrMat)
if size(A, 1) != size(Q, 1)
Expand Down

0 comments on commit 7358173

Please sign in to comment.