Skip to content

Commit

Permalink
Avoid checking the diagonal for non-real elements when constructing H…
Browse files Browse the repository at this point in the history
…ermitians
  • Loading branch information
andreasnoack committed Oct 24, 2016
1 parent 757ab7b commit aba1bad
Show file tree
Hide file tree
Showing 4 changed files with 74 additions and 66 deletions.
84 changes: 28 additions & 56 deletions base/linalg/symmetric.jl
Original file line number Diff line number Diff line change
Expand Up @@ -43,13 +43,15 @@ eigfact(Hupper)
`eigfact` will use a method specialized for matrices known to be Hermitian.
Note that `Hupper` will not be equal to `Hlower` unless `A` is itself Hermitian (e.g. if `A == A'`).
All non-real parts of the diagonal will be ignored.
```julia
Hermitian(fill(complex(1,1), 1, 1)) == fill(1, 1, 1)
```
"""
function Hermitian(A::AbstractMatrix, uplo::Symbol=:U)
n = checksquare(A)
for i=1:n
isreal(A[i, i]) || throw(ArgumentError(
"Cannot construct Hermitian from matrix with nonreal diagonals"))
end
Hermitian{eltype(A),typeof(A)}(A, char_uplo(uplo))
end

Expand All @@ -60,13 +62,21 @@ size(A::HermOrSym, d) = size(A.data, d)
size(A::HermOrSym) = size(A.data)
@inline function getindex(A::Symmetric, i::Integer, j::Integer)
@boundscheck checkbounds(A, i, j)
@inbounds r = (A.uplo == 'U') == (i < j) ? A.data[i, j] : A.data[j, i]
r
@inbounds if (A.uplo == 'U') == (i < j)
return A.data[i, j]
else
return A.data[j, i]
end
end
@inline function getindex(A::Hermitian, i::Integer, j::Integer)
@boundscheck checkbounds(A, i, j)
@inbounds r = (A.uplo == 'U') == (i < j) ? A.data[i, j] : conj(A.data[j, i])
r
@inbounds if (A.uplo == 'U') == (i < j)
return A.data[i, j]
elseif i == j
return eltype(A)(real(A.data[i, j]))
else
return conj(A.data[j, i])
end
end

similar{T}(A::Symmetric, ::Type{T}) = Symmetric(similar(A.data, T))
Expand All @@ -82,9 +92,16 @@ end

# Conversion
convert(::Type{Matrix}, A::Symmetric) = copytri!(convert(Matrix, copy(A.data)), A.uplo)
convert(::Type{Matrix}, A::Hermitian) = copytri!(convert(Matrix, copy(A.data)), A.uplo, true)
function convert(::Type{Matrix}, A::Hermitian)
B = copytri!(convert(Matrix, copy(A.data)), A.uplo, true)
for i = 1:size(A, 1)
B[i,i] = real(B[i,i])
end
return B
end
convert(::Type{Array}, A::Union{Symmetric,Hermitian}) = convert(Matrix, A)
full(A::Union{Symmetric,Hermitian}) = convert(Array, A)

parent(A::HermOrSym) = A.data
convert{T,S<:AbstractMatrix}(::Type{Symmetric{T,S}},A::Symmetric{T,S}) = A
convert{T,S<:AbstractMatrix}(::Type{Symmetric{T,S}},A::Symmetric) = Symmetric{T,S}(convert(S,A.data),A.uplo)
Expand Down Expand Up @@ -118,53 +135,8 @@ Base.conj(A::HermOrSym) = typeof(A)(conj(A.data), A.uplo)
Base.conj!(A::HermOrSym) = typeof(A)(conj!(A.data), A.uplo)

#tril/triu
function tril(A::Hermitian, k::Integer=0)
if A.uplo == 'U' && k <= 0
return tril!(A.data',k)
elseif A.uplo == 'U' && k > 0
return tril!(A.data',-1) + tril!(triu(A.data),k)
elseif A.uplo == 'L' && k <= 0
return tril(A.data,k)
else
return tril(A.data,-1) + tril!(triu!(A.data'),k)
end
end

function tril(A::Symmetric, k::Integer=0)
if A.uplo == 'U' && k <= 0
return tril!(A.data.',k)
elseif A.uplo == 'U' && k > 0
return tril!(A.data.',-1) + tril!(triu(A.data),k)
elseif A.uplo == 'L' && k <= 0
return tril(A.data,k)
else
return tril(A.data,-1) + tril!(triu!(A.data.'),k)
end
end

function triu(A::Hermitian, k::Integer=0)
if A.uplo == 'U' && k >= 0
return triu(A.data,k)
elseif A.uplo == 'U' && k < 0
return triu(A.data,1) + triu!(tril!(A.data'),k)
elseif A.uplo == 'L' && k >= 0
return triu!(A.data',k)
else
return triu!(A.data',1) + triu!(tril(A.data),k)
end
end

function triu(A::Symmetric, k::Integer=0)
if A.uplo == 'U' && k >= 0
return triu(A.data,k)
elseif A.uplo == 'U' && k < 0
return triu(A.data,1) + triu!(tril!(A.data.'),k)
elseif A.uplo == 'L' && k >= 0
return triu!(A.data.',k)
else
return triu!(A.data.',1) + triu!(tril(A.data),k)
end
end
tril(A::HermOrSym, k::Integer = 0) = tril!(full(A), k)
triu(A::HermOrSym, k::Integer = 0) = triu!(full(A), k)

-{Tv,S<:AbstractMatrix}(A::Symmetric{Tv,S}) = Symmetric{Tv,S}(-A.data, A.uplo)

Expand Down
30 changes: 29 additions & 1 deletion base/sparse/cholmod.jl
Original file line number Diff line number Diff line change
Expand Up @@ -886,7 +886,35 @@ function convert{Tv<:VTypes,Ti<:ITypes}(::Type{Sparse}, A::SparseMatrixCSC{Tv,Ti
end
convert{Ti<:ITypes}(::Type{Sparse}, A::SparseMatrixCSC{Complex{Float32},Ti}) = convert(Sparse, convert(SparseMatrixCSC{Complex{Float64},SuiteSparse_long}, A))
convert(::Type{Sparse}, A::Symmetric{Float64,SparseMatrixCSC{Float64,SuiteSparse_long}}) = Sparse(A.data, A.uplo == 'L' ? -1 : 1)
convert{Tv<:VTypes}(::Type{Sparse}, A::Hermitian{Tv,SparseMatrixCSC{Tv,SuiteSparse_long}}) = Sparse(A.data, A.uplo == 'L' ? -1 : 1)
# The convert method for Hermitian is very similar to the general convert method, but we need to
# remove any non real elements in the diagonal because, in contrast to BLAS/LAPACK these are not
# ignored by CHOLMOD. If even tiny imaginary parts are present CHOLMOD will fail with a non-positive
# definite/zero pivot error.
function convert{Tv<:VTypes}(::Type{Sparse}, AH::Hermitian{Tv,SparseMatrixCSC{Tv,SuiteSparse_long}})
A = AH.data

# Here we allocate a Symmetric/Hermitian CHOLMOD.Sparse matrix so we only need to copy
# a single triangle of AH
o = allocate_sparse(A.m, A.n, length(A.nzval), true, true, AH.uplo == 'L' ? -1 : 1, Tv)
s = unsafe_load(o.p)
for i = 1:length(A.colptr)
unsafe_store!(s.p, A.colptr[i] - 1, i)
end
for i = 1:length(A.rowval)
unsafe_store!(s.i, A.rowval[i] - 1, i)
end
for j = 1:A.n
for ip = A.colptr[j]:A.colptr[j + 1] - 1
v = A.nzval[ip]
unsafe_store!(s.x, ifelse(A.rowval[ip] == j, real(v), v), ip)
end
end

@isok check_sparse(o)

return o
end

function convert{Ti<:ITypes}(::Type{Sparse},
A::Union{SparseMatrixCSC{BigFloat,Ti},
Symmetric{BigFloat,SparseMatrixCSC{BigFloat,Ti}},
Expand Down
12 changes: 6 additions & 6 deletions test/linalg/symmetric.jl
Original file line number Diff line number Diff line change
Expand Up @@ -199,6 +199,12 @@ let n=10
end
end

# Hermitian wrapper ignores imaginary parts on diagonal
let A = [1.0+im 2.0; 2.0 0.0]
@test !ishermitian(A)
@test Hermitian(A)[1,1] == 1
end

#Issue #7647: test xsyevr, xheevr, xstevr drivers
for Mi7647 in (Symmetric(diagm(1.0:3.0)),
Hermitian(diagm(1.0:3.0)),
Expand All @@ -225,12 +231,6 @@ for f in (eigfact, eigvals, eig)
end
end

#Issue 10671
let A = [1.0+im 2.0; 2.0 0.0]
@test !ishermitian(A)
@test_throws ArgumentError Hermitian(A)
end

# Unary minus for Symmetric matrices
let A = Symmetric(randn(5,5))
B = -A
Expand Down
14 changes: 11 additions & 3 deletions test/sparse/cholmod.jl
Original file line number Diff line number Diff line change
Expand Up @@ -656,9 +656,17 @@ let x = rand(5)
end

# Real factorization and complex rhs
A = sprandn(5,5,0.4) |> t -> t't + I
B = complex(randn(5,2), randn(5,2))
@test cholfact(A)\B A\B
let A = sprandn(5,5,0.4) |> t -> t't + I, B = complex(randn(5,2), randn(5,2))
@test cholfact(A)\B A\B
end

# Test that imaginary parts in Hermitian{T,SparseMatrixCSC{T}} are ignored
let A = sparse([1,2,3,4,1], [1,2,3,4,2], [complex(2.0,1),2,2,2,1])
Fs = cholfact(Hermitian(A))
Fd = cholfact(Hermitian(Array(A)))
@test sparse(Fs) Hermitian(A)
@test Fs\ones(4) Fd\ones(4)
end

# Make sure that ldltfact performs an LDLt (Issue #19032)
let m = 400, n = 500
Expand Down

0 comments on commit aba1bad

Please sign in to comment.