Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Doc and wiki reorg #15

Closed
ViralBShah opened this issue May 9, 2011 · 2 comments
Closed

Doc and wiki reorg #15

ViralBShah opened this issue May 9, 2011 · 2 comments
Assignees

Comments

@ViralBShah
Copy link
Member

Doc stuff should perhaps move to the wiki, wherever it makes sense. Some of the stuff is notes, and then there is the manual as well.

@StefanKarpinski
Copy link
Member

I like how in commits I'm the only one who capitalizes the subject line and here I'm the only one who doesn't ;-)

@ghost ghost assigned StefanKarpinski Jun 3, 2011
@StefanKarpinski
Copy link
Member

I'm currently working on this. Have done the very beginning of porting the manual to the wiki.

burrowsa pushed a commit to burrowsa/julia that referenced this issue Mar 24, 2014
StefanKarpinski pushed a commit that referenced this issue Feb 8, 2018
Typealias String after String -> AbstractString rename
Keno added a commit that referenced this issue Feb 10, 2019
Consider the following function:
```
julia> function foo(a, b)
           ntuple(i->(a+b; i), Val(4))
       end
foo (generic function with 1 method)
```

(In particular note that the return type of the closure does not depend on the types
of `a` and b`). Unfortunately, prior to this change, inference was unable to determine
the return type in this situation:

```
julia> code_typed(foo, Tuple{Any, Any}, trace=true)
Refused to call generated function with non-concrete argument types ntuple(::getfield(Main, Symbol("##15#16")){_A,_B} where _B where _A, ::Val{4}) [GeneratedNotConcrete]

1-element Array{Any,1}:
 CodeInfo(
1 ─ %1 = Main.:(##15#16)::Const(##15#16, false)
│   %2 = Core.typeof(a)::DataType
│   %3 = Core.typeof(b)::DataType
│   %4 = Core.apply_type(%1, %2, %3)::Type{##15#16{_A,_B}} where _B where _A
│   %5 = %new(%4, a, b)::##15#16{_A,_B} where _B where _A
│   %6 = Main.ntuple(%5, $(QuoteNode(Val{4}())))::Any
└──      return %6
) => Any
```

Looking at the definition of ntuple

https://github.com/JuliaLang/julia/blob/abb09f88804c4e74c752a66157e767c9b0f8945d/base/ntuple.jl#L45-L56

we see that it is a generated function an inference thus refuses to invoke it,
unless it can prove the concrete type of *all* arguments to the function. As
the above example illustrates, this restriction is more stringent than necessary.
It is true that we cannot invoke generated functions on arbitrary abstract
signatures (because we neither want to the user to have to be able to nor
do we trust that users are able to preverse monotonicity - i.e. that the return
type of the generated code will always be a subtype of the return type of a more
abstract signature).

However, if some piece of information is not used (the type of the passed function
in this case), there is no problem with calling the generated function (since
information that is unnused cannot possibly affect monotnicity).

This PR allows us to recognize pieces of information that are *syntactically* unused,
and call the generated functions, even if we do not have those pieces of information.

As a result, we are now able to infer the return type of the above function:
```
julia> code_typed(foo, Tuple{Any, Any})
1-element Array{Any,1}:
 CodeInfo(
1 ─ %1 = Main.:(##3#4)::Const(##3#4, false)
│   %2 = Core.typeof(a)::DataType
│   %3 = Core.typeof(b)::DataType
│   %4 = Core.apply_type(%1, %2, %3)::Type{##3#4{_A,_B}} where _B where _A
│   %5 = %new(%4, a, b)::##3#4{_A,_B} where _B where _A
│   %6 = Main.ntuple(%5, $(QuoteNode(Val{4}())))::NTuple{4,Int64}
└──      return %6
) => NTuple{4,Int64}
```

In particular, we use the new frontent `used` flags from the previous commit.
One additional complication is that we want to accesss these flags without
uncompressing the generator source, so we change the compression scheme to
place the flags at a known location.
Keno added a commit that referenced this issue Feb 10, 2019
Consider the following function:
```
julia> function foo(a, b)
           ntuple(i->(a+b; i), Val(4))
       end
foo (generic function with 1 method)
```

(In particular note that the return type of the closure does not depend on the types
of `a` and b`). Unfortunately, prior to this change, inference was unable to determine
the return type in this situation:

```
julia> code_typed(foo, Tuple{Any, Any}, trace=true)
Refused to call generated function with non-concrete argument types ntuple(::getfield(Main, Symbol("##15#16")){_A,_B} where _B where _A, ::Val{4}) [GeneratedNotConcrete]

1-element Array{Any,1}:
 CodeInfo(
1 ─ %1 = Main.:(##15#16)::Const(##15#16, false)
│   %2 = Core.typeof(a)::DataType
│   %3 = Core.typeof(b)::DataType
│   %4 = Core.apply_type(%1, %2, %3)::Type{##15#16{_A,_B}} where _B where _A
│   %5 = %new(%4, a, b)::##15#16{_A,_B} where _B where _A
│   %6 = Main.ntuple(%5, $(QuoteNode(Val{4}())))::Any
└──      return %6
) => Any
```

Looking at the definition of ntuple

https://github.com/JuliaLang/julia/blob/abb09f88804c4e74c752a66157e767c9b0f8945d/base/ntuple.jl#L45-L56

we see that it is a generated function an inference thus refuses to invoke it,
unless it can prove the concrete type of *all* arguments to the function. As
the above example illustrates, this restriction is more stringent than necessary.
It is true that we cannot invoke generated functions on arbitrary abstract
signatures (because we neither want to the user to have to be able to nor
do we trust that users are able to preverse monotonicity - i.e. that the return
type of the generated code will always be a subtype of the return type of a more
abstract signature).

However, if some piece of information is not used (the type of the passed function
in this case), there is no problem with calling the generated function (since
information that is unnused cannot possibly affect monotnicity).

This PR allows us to recognize pieces of information that are *syntactically* unused,
and call the generated functions, even if we do not have those pieces of information.

As a result, we are now able to infer the return type of the above function:
```
julia> code_typed(foo, Tuple{Any, Any})
1-element Array{Any,1}:
 CodeInfo(
1 ─ %1 = Main.:(##3#4)::Const(##3#4, false)
│   %2 = Core.typeof(a)::DataType
│   %3 = Core.typeof(b)::DataType
│   %4 = Core.apply_type(%1, %2, %3)::Type{##3#4{_A,_B}} where _B where _A
│   %5 = %new(%4, a, b)::##3#4{_A,_B} where _B where _A
│   %6 = Main.ntuple(%5, $(QuoteNode(Val{4}())))::NTuple{4,Int64}
└──      return %6
) => NTuple{4,Int64}
```

In particular, we use the new frontent `used` flags from the previous commit.
One additional complication is that we want to accesss these flags without
uncompressing the generator source, so we change the compression scheme to
place the flags at a known location.

Fixes #31004
Keno added a commit that referenced this issue Feb 10, 2019
Consider the following function:
```
julia> function foo(a, b)
           ntuple(i->(a+b; i), Val(4))
       end
foo (generic function with 1 method)
```

(In particular note that the return type of the closure does not depend on the types
of `a` and b`). Unfortunately, prior to this change, inference was unable to determine
the return type in this situation:

```
julia> code_typed(foo, Tuple{Any, Any}, trace=true)
Refused to call generated function with non-concrete argument types ntuple(::getfield(Main, Symbol("##15#16")){_A,_B} where _B where _A, ::Val{4}) [GeneratedNotConcrete]

1-element Array{Any,1}:
 CodeInfo(
1 ─ %1 = Main.:(##15#16)::Const(##15#16, false)
│   %2 = Core.typeof(a)::DataType
│   %3 = Core.typeof(b)::DataType
│   %4 = Core.apply_type(%1, %2, %3)::Type{##15#16{_A,_B}} where _B where _A
│   %5 = %new(%4, a, b)::##15#16{_A,_B} where _B where _A
│   %6 = Main.ntuple(%5, $(QuoteNode(Val{4}())))::Any
└──      return %6
) => Any
```

Looking at the definition of ntuple

https://github.com/JuliaLang/julia/blob/abb09f88804c4e74c752a66157e767c9b0f8945d/base/ntuple.jl#L45-L56

we see that it is a generated function an inference thus refuses to invoke it,
unless it can prove the concrete type of *all* arguments to the function. As
the above example illustrates, this restriction is more stringent than necessary.
It is true that we cannot invoke generated functions on arbitrary abstract
signatures (because we neither want to the user to have to be able to nor
do we trust that users are able to preverse monotonicity - i.e. that the return
type of the generated code will always be a subtype of the return type of a more
abstract signature).

However, if some piece of information is not used (the type of the passed function
in this case), there is no problem with calling the generated function (since
information that is unnused cannot possibly affect monotnicity).

This PR allows us to recognize pieces of information that are *syntactically* unused,
and call the generated functions, even if we do not have those pieces of information.

As a result, we are now able to infer the return type of the above function:
```
julia> code_typed(foo, Tuple{Any, Any})
1-element Array{Any,1}:
 CodeInfo(
1 ─ %1 = Main.:(##3#4)::Const(##3#4, false)
│   %2 = Core.typeof(a)::DataType
│   %3 = Core.typeof(b)::DataType
│   %4 = Core.apply_type(%1, %2, %3)::Type{##3#4{_A,_B}} where _B where _A
│   %5 = %new(%4, a, b)::##3#4{_A,_B} where _B where _A
│   %6 = Main.ntuple(%5, $(QuoteNode(Val{4}())))::NTuple{4,Int64}
└──      return %6
) => NTuple{4,Int64}
```

In particular, we use the new frontent `used` flags from the previous commit.
One additional complication is that we want to accesss these flags without
uncompressing the generator source, so we change the compression scheme to
place the flags at a known location.

Fixes #31004
Keno added a commit that referenced this issue Feb 10, 2019
Consider the following function:
```
julia> function foo(a, b)
           ntuple(i->(a+b; i), Val(4))
       end
foo (generic function with 1 method)
```

(In particular note that the return type of the closure does not depend on the types
of `a` and b`). Unfortunately, prior to this change, inference was unable to determine
the return type in this situation:

```
julia> code_typed(foo, Tuple{Any, Any}, trace=true)
Refused to call generated function with non-concrete argument types ntuple(::getfield(Main, Symbol("##15#16")){_A,_B} where _B where _A, ::Val{4}) [GeneratedNotConcrete]

1-element Array{Any,1}:
 CodeInfo(
1 ─ %1 = Main.:(##15#16)::Const(##15#16, false)
│   %2 = Core.typeof(a)::DataType
│   %3 = Core.typeof(b)::DataType
│   %4 = Core.apply_type(%1, %2, %3)::Type{##15#16{_A,_B}} where _B where _A
│   %5 = %new(%4, a, b)::##15#16{_A,_B} where _B where _A
│   %6 = Main.ntuple(%5, $(QuoteNode(Val{4}())))::Any
└──      return %6
) => Any
```

Looking at the definition of ntuple

https://github.com/JuliaLang/julia/blob/abb09f88804c4e74c752a66157e767c9b0f8945d/base/ntuple.jl#L45-L56

we see that it is a generated function an inference thus refuses to invoke it,
unless it can prove the concrete type of *all* arguments to the function. As
the above example illustrates, this restriction is more stringent than necessary.
It is true that we cannot invoke generated functions on arbitrary abstract
signatures (because we neither want to the user to have to be able to nor
do we trust that users are able to preverse monotonicity - i.e. that the return
type of the generated code will always be a subtype of the return type of a more
abstract signature).

However, if some piece of information is not used (the type of the passed function
in this case), there is no problem with calling the generated function (since
information that is unnused cannot possibly affect monotnicity).

This PR allows us to recognize pieces of information that are *syntactically* unused,
and call the generated functions, even if we do not have those pieces of information.

As a result, we are now able to infer the return type of the above function:
```
julia> code_typed(foo, Tuple{Any, Any})
1-element Array{Any,1}:
 CodeInfo(
1 ─ %1 = Main.:(##3#4)::Const(##3#4, false)
│   %2 = Core.typeof(a)::DataType
│   %3 = Core.typeof(b)::DataType
│   %4 = Core.apply_type(%1, %2, %3)::Type{##3#4{_A,_B}} where _B where _A
│   %5 = %new(%4, a, b)::##3#4{_A,_B} where _B where _A
│   %6 = Main.ntuple(%5, $(QuoteNode(Val{4}())))::NTuple{4,Int64}
└──      return %6
) => NTuple{4,Int64}
```

In particular, we use the new frontent `used` flags from the previous commit.
One additional complication is that we want to accesss these flags without
uncompressing the generator source, so we change the compression scheme to
place the flags at a known location.

Fixes #31004
Keno added a commit that referenced this issue Feb 11, 2019
Consider the following function:
```
julia> function foo(a, b)
           ntuple(i->(a+b; i), Val(4))
       end
foo (generic function with 1 method)
```

(In particular note that the return type of the closure does not depend on the types
of `a` and b`). Unfortunately, prior to this change, inference was unable to determine
the return type in this situation:

```
julia> code_typed(foo, Tuple{Any, Any}, trace=true)
Refused to call generated function with non-concrete argument types ntuple(::getfield(Main, Symbol("##15#16")){_A,_B} where _B where _A, ::Val{4}) [GeneratedNotConcrete]

1-element Array{Any,1}:
 CodeInfo(
1 ─ %1 = Main.:(##15#16)::Const(##15#16, false)
│   %2 = Core.typeof(a)::DataType
│   %3 = Core.typeof(b)::DataType
│   %4 = Core.apply_type(%1, %2, %3)::Type{##15#16{_A,_B}} where _B where _A
│   %5 = %new(%4, a, b)::##15#16{_A,_B} where _B where _A
│   %6 = Main.ntuple(%5, $(QuoteNode(Val{4}())))::Any
└──      return %6
) => Any
```

Looking at the definition of ntuple

https://github.com/JuliaLang/julia/blob/abb09f88804c4e74c752a66157e767c9b0f8945d/base/ntuple.jl#L45-L56

we see that it is a generated function an inference thus refuses to invoke it,
unless it can prove the concrete type of *all* arguments to the function. As
the above example illustrates, this restriction is more stringent than necessary.
It is true that we cannot invoke generated functions on arbitrary abstract
signatures (because we neither want to the user to have to be able to nor
do we trust that users are able to preverse monotonicity - i.e. that the return
type of the generated code will always be a subtype of the return type of a more
abstract signature).

However, if some piece of information is not used (the type of the passed function
in this case), there is no problem with calling the generated function (since
information that is unnused cannot possibly affect monotnicity).

This PR allows us to recognize pieces of information that are *syntactically* unused,
and call the generated functions, even if we do not have those pieces of information.

As a result, we are now able to infer the return type of the above function:
```
julia> code_typed(foo, Tuple{Any, Any})
1-element Array{Any,1}:
 CodeInfo(
1 ─ %1 = Main.:(##3#4)::Const(##3#4, false)
│   %2 = Core.typeof(a)::DataType
│   %3 = Core.typeof(b)::DataType
│   %4 = Core.apply_type(%1, %2, %3)::Type{##3#4{_A,_B}} where _B where _A
│   %5 = %new(%4, a, b)::##3#4{_A,_B} where _B where _A
│   %6 = Main.ntuple(%5, $(QuoteNode(Val{4}())))::NTuple{4,Int64}
└──      return %6
) => NTuple{4,Int64}
```

In particular, we use the new frontent `used` flags from the previous commit.
One additional complication is that we want to accesss these flags without
uncompressing the generator source, so we change the compression scheme to
place the flags at a known location.

Fixes #31004
Keno added a commit that referenced this issue Feb 13, 2019
Consider the following function:
```
julia> function foo(a, b)
           ntuple(i->(a+b; i), Val(4))
       end
foo (generic function with 1 method)
```

(In particular note that the return type of the closure does not depend on the types
of `a` and b`). Unfortunately, prior to this change, inference was unable to determine
the return type in this situation:

```
julia> code_typed(foo, Tuple{Any, Any}, trace=true)
Refused to call generated function with non-concrete argument types ntuple(::getfield(Main, Symbol("##15#16")){_A,_B} where _B where _A, ::Val{4}) [GeneratedNotConcrete]

1-element Array{Any,1}:
 CodeInfo(
1 ─ %1 = Main.:(##15#16)::Const(##15#16, false)
│   %2 = Core.typeof(a)::DataType
│   %3 = Core.typeof(b)::DataType
│   %4 = Core.apply_type(%1, %2, %3)::Type{##15#16{_A,_B}} where _B where _A
│   %5 = %new(%4, a, b)::##15#16{_A,_B} where _B where _A
│   %6 = Main.ntuple(%5, $(QuoteNode(Val{4}())))::Any
└──      return %6
) => Any
```

Looking at the definition of ntuple

https://github.com/JuliaLang/julia/blob/abb09f88804c4e74c752a66157e767c9b0f8945d/base/ntuple.jl#L45-L56

we see that it is a generated function an inference thus refuses to invoke it,
unless it can prove the concrete type of *all* arguments to the function. As
the above example illustrates, this restriction is more stringent than necessary.
It is true that we cannot invoke generated functions on arbitrary abstract
signatures (because we neither want to the user to have to be able to nor
do we trust that users are able to preverse monotonicity - i.e. that the return
type of the generated code will always be a subtype of the return type of a more
abstract signature).

However, if some piece of information is not used (the type of the passed function
in this case), there is no problem with calling the generated function (since
information that is unnused cannot possibly affect monotnicity).

This PR allows us to recognize pieces of information that are *syntactically* unused,
and call the generated functions, even if we do not have those pieces of information.

As a result, we are now able to infer the return type of the above function:
```
julia> code_typed(foo, Tuple{Any, Any})
1-element Array{Any,1}:
 CodeInfo(
1 ─ %1 = Main.:(##3#4)::Const(##3#4, false)
│   %2 = Core.typeof(a)::DataType
│   %3 = Core.typeof(b)::DataType
│   %4 = Core.apply_type(%1, %2, %3)::Type{##3#4{_A,_B}} where _B where _A
│   %5 = %new(%4, a, b)::##3#4{_A,_B} where _B where _A
│   %6 = Main.ntuple(%5, $(QuoteNode(Val{4}())))::NTuple{4,Int64}
└──      return %6
) => NTuple{4,Int64}
```

In particular, we use the new frontent `used` flags from the previous commit.
One additional complication is that we want to accesss these flags without
uncompressing the generator source, so we change the compression scheme to
place the flags at a known location.

Fixes #31004
yakir12 pushed a commit to yakir12/julia that referenced this issue Jun 17, 2019
Long options are trimmed to the width of the terminal (JuliaLang#15)
cmcaine pushed a commit to cmcaine/julia that referenced this issue Sep 24, 2020
Additional info for adding exercises in README
jmert added a commit to jmert/julia that referenced this issue Nov 4, 2020
If the sparse array does not have a concrete index type, then union
splitting occurs over the possible `<:Integer` types permitted by
`SparseMatrixCSC`:

```julia
julia> code_warntype(nnz, (SparseMatrixCSC{Float64,<:Integer},), optimize=true, debuginfo=:none)
Variables
  #self#::Core.Const(SparseArrays.nnz)
  S::SparseMatrixCSC{Float64, var"#s96"} where var"#s96"<:Integer

Body::Any
1 ── %1  = SparseArrays.getfield(S, :colptr)::Vector{var"#s96"} where var"#s96"<:Integer
│    %2  = SparseArrays.getfield(S, :n)::Int64
│    %3  = Base.add_int(%2, 1)::Int64
│    %4  = Base.getindex(%1, %3)::Integer
│    %5  = (isa)(%4, Int64)::Bool
└───       goto JuliaLang#3 if not %5
2 ── %7  = π (%4, Int64)
│    %8  = Base.sub_int(%7, 1)::Int64
└───       goto JuliaLang#15
3 ── %10 = (isa)(%4, BigInt)::Bool
└───       goto JuliaLang#14 if not %10
4 ── %12 = π (%4, BigInt)
│    %13 = Base.slt_int(1, 0)::Bool
└───       goto JuliaLang#6 if not %13
5 ── %15 = Base.bitcast(UInt64, 1)::UInt64
│    %16 = Base.neg_int(%15)::UInt64
│    %17 = Base.GMP.MPZ.add_ui::typeof(Base.GMP.MPZ.add_ui)
│    %18 = invoke %17(%12::BigInt, %16::UInt64)::BigInt
└───       goto JuliaLang#13
6 ── %20 = Core.lshr_int(1, 63)::Int64
│    %21 = Core.trunc_int(Core.UInt8, %20)::UInt8
│    %22 = Core.eq_int(%21, 0x01)::Bool
└───       goto JuliaLang#8 if not %22
7 ──       invoke Core.throw_inexacterror(:check_top_bit::Symbol, UInt64::Type{UInt64}, 1::Int64)
└───       unreachable
8 ──       goto JuliaLang#9
9 ── %27 = Core.bitcast(Core.UInt64, 1)::UInt64
└───       goto JuliaLang#10
10 ─       goto JuliaLang#11
11 ─       goto JuliaLang#12
12 ─ %31 = Base.GMP.MPZ.sub_ui::typeof(Base.GMP.MPZ.sub_ui)
│    %32 = invoke %31(%12::BigInt, %27::UInt64)::BigInt
└───       goto JuliaLang#13
13 ┄ %34 = φ (JuliaLang#5 => %18, JuliaLang#12 => %32)::Any
└───       goto JuliaLang#15
14 ─ %36 = (%4 - 1)::Any
└───       goto JuliaLang#15
15 ┄ %38 = φ (JuliaLang#2 => %8, JuliaLang#13 => %34, JuliaLang#14 => %36)::Any
│    %39 = SparseArrays.Int(%38)::Any
└───       return %39
```

It appears that union splitting over the subtraction by one includes
an `Any` branch that widens the return type of `nnz`. By instead
converting the index type to `Int` before subtracting, type inference
is able to infer that all paths give an `Int` result:

```julia
julia> code_warntype(nnz, (SparseMatrixCSC{Float64,<:Integer},), optimize=true, debuginfo=:none)
Variables
  #self#::Core.Const(SparseArrays.nnz)
  S::SparseMatrixCSC{Float64, var"#s96"} where var"#s96"<:Integer

Body::Int64
1 ── %1  = SparseArrays.getfield(S, :colptr)::Vector{var"#s96"} where var"#s96"<:Integer
│    %2  = SparseArrays.getfield(S, :n)::Int64
│    %3  = Base.add_int(%2, 1)::Int64
│    %4  = Base.getindex(%1, %3)::Integer
│    %5  = (isa)(%4, BigInt)::Bool
└───       goto JuliaLang#14 if not %5
2 ── %7  = π (%4, BigInt)
│    %8  = Base.getfield(%7, :size)::Int32
│    %9  = Base.flipsign_int(%8, %8)::Int32
│    %10 = Core.sext_int(Core.Int64, %9)::Int64
│    %11 = Base.sle_int(0, %10)::Bool
└───       goto JuliaLang#4 if not %11
3 ── %13 = Core.sext_int(Core.Int64, %9)::Int64
│    %14 = Base.sle_int(%13, 1)::Bool
└───       goto JuliaLang#5
4 ──       nothing
5 ┄─ %17 = φ (JuliaLang#3 => %14, JuliaLang#4 => false)::Bool
└───       goto JuliaLang#12 if not %17
6 ── %19 = Base.getfield(%7, :size)::Int32
│    %20 = Core.sext_int(Core.Int64, %19)::Int64
│    %21 = (%20 === 0)::Bool
└───       goto JuliaLang#8 if not %21
7 ──       goto JuliaLang#9
8 ── %24 = Base.getfield(%7, :d)::Ptr{UInt64}
│    %25 = Base.pointerref(%24, 1, 1)::UInt64
│    %26 = Base.bitcast(Int64, %25)::Int64
│    %27 = Base.getfield(%7, :size)::Int32
│    %28 = Core.sext_int(Core.Int64, %27)::Int64
│    %29 = Base.flipsign_int(%26, %28)::Int64
└───       goto JuliaLang#9
9 ┄─ %31 = φ (JuliaLang#7 => 0, JuliaLang#8 => %29)::Int64
│    %32 = Base.getfield(%7, :size)::Int32
│    %33 = Core.sext_int(Core.Int64, %32)::Int64
│    %34 = Base.slt_int(0, %33)::Bool
│    %35 = Base.slt_int(0, %31)::Bool
│    %36 = (%34 === %35)::Bool
│    %37 = Base.not_int(%36)::Bool
└───       goto JuliaLang#11 if not %37
10 ─ %39 = Base.GMP.nameof(Int64)::Any
│    %40 = Base.GMP.InexactError(%39, Int64, %7)::Any
│          Base.GMP.throw(%40)
└───       unreachable
11 ─       goto JuliaLang#13
12 ─ %44 = Base.GMP.nameof(Int64)::Any
│    %45 = Base.GMP.InexactError(%44, Int64, %7)::Any
│          Base.GMP.throw(%45)
└───       unreachable
13 ─       goto JuliaLang#15
14 ─ %49 = SparseArrays.Int(%4)::Int64
└───       goto JuliaLang#15
15 ┄ %51 = φ (JuliaLang#13 => %31, JuliaLang#14 => %49)::Int64
│    %52 = Base.sub_int(%51, 1)::Int64
└───       return %52
```
LilithHafner referenced this issue in LilithHafner/julia Oct 11, 2021
add sample_by_weights function
staticfloat added a commit that referenced this issue Jun 25, 2022
When calling `jl_error()` or `jl_errorf()`, we must check to see if we
are so early in the bringup process that it is dangerous to attempt to
construct a backtrace because the data structures used to provide line
information are not properly setup.

This can be easily triggered by running:

```
julia -C invalid
```

On an `i686-linux-gnu` build, this will hit the "Invalid CPU Name"
branch in `jitlayers.cpp`, which calls `jl_errorf()`.  This in turn
calls `jl_throw()`, which will eventually call `jl_DI_for_fptr` as part
of the backtrace printing process, which fails as the object maps are
not fully initialized.  See the below `gdb` stacktrace for details:

```
$ gdb -batch -ex 'r' -ex 'bt' --args ./julia -C invalid
...
fatal: error thrown and no exception handler available.
ErrorException("Invalid CPU name "invalid".")

Thread 1 "julia" received signal SIGSEGV, Segmentation fault.
0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
1277    /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h: No such file or directory.
 #0  0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
 #1  std::map<unsigned int, JITDebugInfoRegistry::ObjectInfo, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__x=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_map.h:1258
 #2  jl_DI_for_fptr (fptr=4155049385, symsize=symsize@entry=0xffffcfa8, slide=slide@entry=0xffffcfa0, Section=Section@entry=0xffffcfb8, context=context@entry=0xffffcf94) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1181
 #3  0xf75c056a in jl_getFunctionInfo_impl (frames_out=0xffffd03c, pointer=4155049385, skipC=0, noInline=0) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1210
 #4  0xf7a6ca98 in jl_print_native_codeloc (ip=4155049385) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:636
 #5  0xf7a6cd54 in jl_print_bt_entry_codeloc (bt_entry=0xf0798018) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:657
 #6  jlbacktrace () at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:1090
 #7  0xf7a3cd2b in ijl_no_exc_handler (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:605
 #8  0xf7a3d10a in throw_internal (ct=ct@entry=0xf070c010, exception=<optimized out>, exception@entry=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:638
 #9  0xf7a3d330 in ijl_throw (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:654
 #10 0xf7a905aa in ijl_errorf (fmt=fmt@entry=0xf7647cd4 "Invalid CPU name \"%s\".") at /cache/build/default-amdci5-4/julialang/julia-master/src/rtutils.c:77
 #11 0xf75a4b22 in (anonymous namespace)::createTargetMachine () at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:823
 #12 JuliaOJIT::JuliaOJIT (this=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:1044
 #13 0xf7531793 in jl_init_llvm () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8585
 #14 0xf75318a8 in jl_init_codegen_impl () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8648
 #15 0xf7a51a52 in jl_restore_system_image_from_stream (f=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2131
 #16 0xf7a55c03 in ijl_restore_system_image_data (buf=0xe859c1c0 <jl_system_image_data> "8'\031\003", len=125161105) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2184
 #17 0xf7a55cf9 in jl_load_sysimg_so () at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:424
 #18 ijl_restore_system_image (fname=0x80a0900 "/build/bk_download/julia-d78fdad601/lib/julia/sys.so") at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2157
 #19 0xf7a3bdfc in _finish_julia_init (rel=rel@entry=JL_IMAGE_JULIA_HOME, ct=<optimized out>, ptls=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:741
 #20 0xf7a3c8ac in julia_init (rel=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:728
 #21 0xf7a7f61d in jl_repl_entrypoint (argc=<optimized out>, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/src/jlapi.c:705
 #22 0x080490a7 in main (argc=3, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/cli/loader_exe.c:59
```

This solution adds a check against `jl_error_sym` as a data structure
that gets initialized relatively late in the bringup process.
staticfloat added a commit that referenced this issue Jun 25, 2022
When calling `jl_error()` or `jl_errorf()`, we must check to see if we
are so early in the bringup process that it is dangerous to attempt to
construct a backtrace because the data structures used to provide line
information are not properly setup.

This can be easily triggered by running:

```
julia -C invalid
```

On an `i686-linux-gnu` build, this will hit the "Invalid CPU Name"
branch in `jitlayers.cpp`, which calls `jl_errorf()`.  This in turn
calls `jl_throw()`, which will eventually call `jl_DI_for_fptr` as part
of the backtrace printing process, which fails as the object maps are
not fully initialized.  See the below `gdb` stacktrace for details:

```
$ gdb -batch -ex 'r' -ex 'bt' --args ./julia -C invalid
...
fatal: error thrown and no exception handler available.
ErrorException("Invalid CPU name "invalid".")

Thread 1 "julia" received signal SIGSEGV, Segmentation fault.
0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
1277    /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h: No such file or directory.
 #0  0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
 #1  std::map<unsigned int, JITDebugInfoRegistry::ObjectInfo, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__x=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_map.h:1258
 #2  jl_DI_for_fptr (fptr=4155049385, symsize=symsize@entry=0xffffcfa8, slide=slide@entry=0xffffcfa0, Section=Section@entry=0xffffcfb8, context=context@entry=0xffffcf94) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1181
 #3  0xf75c056a in jl_getFunctionInfo_impl (frames_out=0xffffd03c, pointer=4155049385, skipC=0, noInline=0) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1210
 #4  0xf7a6ca98 in jl_print_native_codeloc (ip=4155049385) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:636
 #5  0xf7a6cd54 in jl_print_bt_entry_codeloc (bt_entry=0xf0798018) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:657
 #6  jlbacktrace () at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:1090
 #7  0xf7a3cd2b in ijl_no_exc_handler (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:605
 #8  0xf7a3d10a in throw_internal (ct=ct@entry=0xf070c010, exception=<optimized out>, exception@entry=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:638
 #9  0xf7a3d330 in ijl_throw (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:654
 #10 0xf7a905aa in ijl_errorf (fmt=fmt@entry=0xf7647cd4 "Invalid CPU name \"%s\".") at /cache/build/default-amdci5-4/julialang/julia-master/src/rtutils.c:77
 #11 0xf75a4b22 in (anonymous namespace)::createTargetMachine () at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:823
 #12 JuliaOJIT::JuliaOJIT (this=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:1044
 #13 0xf7531793 in jl_init_llvm () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8585
 #14 0xf75318a8 in jl_init_codegen_impl () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8648
 #15 0xf7a51a52 in jl_restore_system_image_from_stream (f=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2131
 #16 0xf7a55c03 in ijl_restore_system_image_data (buf=0xe859c1c0 <jl_system_image_data> "8'\031\003", len=125161105) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2184
 #17 0xf7a55cf9 in jl_load_sysimg_so () at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:424
 #18 ijl_restore_system_image (fname=0x80a0900 "/build/bk_download/julia-d78fdad601/lib/julia/sys.so") at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2157
 #19 0xf7a3bdfc in _finish_julia_init (rel=rel@entry=JL_IMAGE_JULIA_HOME, ct=<optimized out>, ptls=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:741
 #20 0xf7a3c8ac in julia_init (rel=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:728
 #21 0xf7a7f61d in jl_repl_entrypoint (argc=<optimized out>, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/src/jlapi.c:705
 #22 0x080490a7 in main (argc=3, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/cli/loader_exe.c:59
```

This solution adds a check against `jl_error_sym` as a data structure
that gets initialized relatively late in the bringup process.
staticfloat added a commit that referenced this issue Jun 27, 2022
When calling `jl_error()` or `jl_errorf()`, we must check to see if we
are so early in the bringup process that it is dangerous to attempt to
construct a backtrace because the data structures used to provide line
information are not properly setup.

This can be easily triggered by running:

```
julia -C invalid
```

On an `i686-linux-gnu` build, this will hit the "Invalid CPU Name"
branch in `jitlayers.cpp`, which calls `jl_errorf()`.  This in turn
calls `jl_throw()`, which will eventually call `jl_DI_for_fptr` as part
of the backtrace printing process, which fails as the object maps are
not fully initialized.  See the below `gdb` stacktrace for details:

```
$ gdb -batch -ex 'r' -ex 'bt' --args ./julia -C invalid
...
fatal: error thrown and no exception handler available.
ErrorException("Invalid CPU name "invalid".")

Thread 1 "julia" received signal SIGSEGV, Segmentation fault.
0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
1277    /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h: No such file or directory.
 #0  0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
 #1  std::map<unsigned int, JITDebugInfoRegistry::ObjectInfo, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__x=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_map.h:1258
 #2  jl_DI_for_fptr (fptr=4155049385, symsize=symsize@entry=0xffffcfa8, slide=slide@entry=0xffffcfa0, Section=Section@entry=0xffffcfb8, context=context@entry=0xffffcf94) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1181
 #3  0xf75c056a in jl_getFunctionInfo_impl (frames_out=0xffffd03c, pointer=4155049385, skipC=0, noInline=0) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1210
 #4  0xf7a6ca98 in jl_print_native_codeloc (ip=4155049385) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:636
 #5  0xf7a6cd54 in jl_print_bt_entry_codeloc (bt_entry=0xf0798018) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:657
 #6  jlbacktrace () at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:1090
 #7  0xf7a3cd2b in ijl_no_exc_handler (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:605
 #8  0xf7a3d10a in throw_internal (ct=ct@entry=0xf070c010, exception=<optimized out>, exception@entry=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:638
 #9  0xf7a3d330 in ijl_throw (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:654
 #10 0xf7a905aa in ijl_errorf (fmt=fmt@entry=0xf7647cd4 "Invalid CPU name \"%s\".") at /cache/build/default-amdci5-4/julialang/julia-master/src/rtutils.c:77
 #11 0xf75a4b22 in (anonymous namespace)::createTargetMachine () at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:823
 #12 JuliaOJIT::JuliaOJIT (this=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:1044
 #13 0xf7531793 in jl_init_llvm () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8585
 #14 0xf75318a8 in jl_init_codegen_impl () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8648
 #15 0xf7a51a52 in jl_restore_system_image_from_stream (f=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2131
 #16 0xf7a55c03 in ijl_restore_system_image_data (buf=0xe859c1c0 <jl_system_image_data> "8'\031\003", len=125161105) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2184
 #17 0xf7a55cf9 in jl_load_sysimg_so () at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:424
 #18 ijl_restore_system_image (fname=0x80a0900 "/build/bk_download/julia-d78fdad601/lib/julia/sys.so") at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2157
 #19 0xf7a3bdfc in _finish_julia_init (rel=rel@entry=JL_IMAGE_JULIA_HOME, ct=<optimized out>, ptls=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:741
 #20 0xf7a3c8ac in julia_init (rel=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:728
 #21 0xf7a7f61d in jl_repl_entrypoint (argc=<optimized out>, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/src/jlapi.c:705
 #22 0x080490a7 in main (argc=3, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/cli/loader_exe.c:59
```

This solution adds a check against `jl_error_sym` as a data structure
that gets initialized relatively late in the bringup process.
staticfloat added a commit that referenced this issue Jun 29, 2022
When calling `jl_error()` or `jl_errorf()`, we must check to see if we
are so early in the bringup process that it is dangerous to attempt to
construct a backtrace because the data structures used to provide line
information are not properly setup.

This can be easily triggered by running:

```
julia -C invalid
```

On an `i686-linux-gnu` build, this will hit the "Invalid CPU Name"
branch in `jitlayers.cpp`, which calls `jl_errorf()`.  This in turn
calls `jl_throw()`, which will eventually call `jl_DI_for_fptr` as part
of the backtrace printing process, which fails as the object maps are
not fully initialized.  See the below `gdb` stacktrace for details:

```
$ gdb -batch -ex 'r' -ex 'bt' --args ./julia -C invalid
...
fatal: error thrown and no exception handler available.
ErrorException("Invalid CPU name "invalid".")

Thread 1 "julia" received signal SIGSEGV, Segmentation fault.
0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
1277    /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h: No such file or directory.
 #0  0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
 #1  std::map<unsigned int, JITDebugInfoRegistry::ObjectInfo, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__x=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_map.h:1258
 #2  jl_DI_for_fptr (fptr=4155049385, symsize=symsize@entry=0xffffcfa8, slide=slide@entry=0xffffcfa0, Section=Section@entry=0xffffcfb8, context=context@entry=0xffffcf94) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1181
 #3  0xf75c056a in jl_getFunctionInfo_impl (frames_out=0xffffd03c, pointer=4155049385, skipC=0, noInline=0) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1210
 #4  0xf7a6ca98 in jl_print_native_codeloc (ip=4155049385) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:636
 #5  0xf7a6cd54 in jl_print_bt_entry_codeloc (bt_entry=0xf0798018) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:657
 #6  jlbacktrace () at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:1090
 #7  0xf7a3cd2b in ijl_no_exc_handler (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:605
 #8  0xf7a3d10a in throw_internal (ct=ct@entry=0xf070c010, exception=<optimized out>, exception@entry=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:638
 #9  0xf7a3d330 in ijl_throw (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:654
 #10 0xf7a905aa in ijl_errorf (fmt=fmt@entry=0xf7647cd4 "Invalid CPU name \"%s\".") at /cache/build/default-amdci5-4/julialang/julia-master/src/rtutils.c:77
 #11 0xf75a4b22 in (anonymous namespace)::createTargetMachine () at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:823
 #12 JuliaOJIT::JuliaOJIT (this=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:1044
 #13 0xf7531793 in jl_init_llvm () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8585
 #14 0xf75318a8 in jl_init_codegen_impl () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8648
 #15 0xf7a51a52 in jl_restore_system_image_from_stream (f=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2131
 #16 0xf7a55c03 in ijl_restore_system_image_data (buf=0xe859c1c0 <jl_system_image_data> "8'\031\003", len=125161105) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2184
 #17 0xf7a55cf9 in jl_load_sysimg_so () at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:424
 #18 ijl_restore_system_image (fname=0x80a0900 "/build/bk_download/julia-d78fdad601/lib/julia/sys.so") at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2157
 #19 0xf7a3bdfc in _finish_julia_init (rel=rel@entry=JL_IMAGE_JULIA_HOME, ct=<optimized out>, ptls=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:741
 #20 0xf7a3c8ac in julia_init (rel=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:728
 #21 0xf7a7f61d in jl_repl_entrypoint (argc=<optimized out>, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/src/jlapi.c:705
 #22 0x080490a7 in main (argc=3, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/cli/loader_exe.c:59
```

To prevent this, we simply avoid calling `jl_errorf` this early in the
process, punting the problem to a later PR that can update guard
conditions within `jl_error*`.
staticfloat added a commit that referenced this issue Jun 29, 2022
When calling `jl_error()` or `jl_errorf()`, we must check to see if we
are so early in the bringup process that it is dangerous to attempt to
construct a backtrace because the data structures used to provide line
information are not properly setup.

This can be easily triggered by running:

```
julia -C invalid
```

On an `i686-linux-gnu` build, this will hit the "Invalid CPU Name"
branch in `jitlayers.cpp`, which calls `jl_errorf()`.  This in turn
calls `jl_throw()`, which will eventually call `jl_DI_for_fptr` as part
of the backtrace printing process, which fails as the object maps are
not fully initialized.  See the below `gdb` stacktrace for details:

```
$ gdb -batch -ex 'r' -ex 'bt' --args ./julia -C invalid
...
fatal: error thrown and no exception handler available.
ErrorException("Invalid CPU name "invalid".")

Thread 1 "julia" received signal SIGSEGV, Segmentation fault.
0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
1277    /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h: No such file or directory.
 #0  0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
 #1  std::map<unsigned int, JITDebugInfoRegistry::ObjectInfo, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__x=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_map.h:1258
 #2  jl_DI_for_fptr (fptr=4155049385, symsize=symsize@entry=0xffffcfa8, slide=slide@entry=0xffffcfa0, Section=Section@entry=0xffffcfb8, context=context@entry=0xffffcf94) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1181
 #3  0xf75c056a in jl_getFunctionInfo_impl (frames_out=0xffffd03c, pointer=4155049385, skipC=0, noInline=0) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1210
 #4  0xf7a6ca98 in jl_print_native_codeloc (ip=4155049385) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:636
 #5  0xf7a6cd54 in jl_print_bt_entry_codeloc (bt_entry=0xf0798018) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:657
 #6  jlbacktrace () at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:1090
 #7  0xf7a3cd2b in ijl_no_exc_handler (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:605
 #8  0xf7a3d10a in throw_internal (ct=ct@entry=0xf070c010, exception=<optimized out>, exception@entry=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:638
 #9  0xf7a3d330 in ijl_throw (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:654
 #10 0xf7a905aa in ijl_errorf (fmt=fmt@entry=0xf7647cd4 "Invalid CPU name \"%s\".") at /cache/build/default-amdci5-4/julialang/julia-master/src/rtutils.c:77
 #11 0xf75a4b22 in (anonymous namespace)::createTargetMachine () at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:823
 #12 JuliaOJIT::JuliaOJIT (this=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:1044
 #13 0xf7531793 in jl_init_llvm () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8585
 #14 0xf75318a8 in jl_init_codegen_impl () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8648
 #15 0xf7a51a52 in jl_restore_system_image_from_stream (f=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2131
 #16 0xf7a55c03 in ijl_restore_system_image_data (buf=0xe859c1c0 <jl_system_image_data> "8'\031\003", len=125161105) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2184
 #17 0xf7a55cf9 in jl_load_sysimg_so () at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:424
 #18 ijl_restore_system_image (fname=0x80a0900 "/build/bk_download/julia-d78fdad601/lib/julia/sys.so") at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2157
 #19 0xf7a3bdfc in _finish_julia_init (rel=rel@entry=JL_IMAGE_JULIA_HOME, ct=<optimized out>, ptls=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:741
 #20 0xf7a3c8ac in julia_init (rel=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:728
 #21 0xf7a7f61d in jl_repl_entrypoint (argc=<optimized out>, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/src/jlapi.c:705
 #22 0x080490a7 in main (argc=3, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/cli/loader_exe.c:59
```

To prevent this, we simply avoid calling `jl_errorf` this early in the
process, punting the problem to a later PR that can update guard
conditions within `jl_error*`.
staticfloat added a commit that referenced this issue Jun 29, 2022
When calling `jl_error()` or `jl_errorf()`, we must check to see if we
are so early in the bringup process that it is dangerous to attempt to
construct a backtrace because the data structures used to provide line
information are not properly setup.

This can be easily triggered by running:

```
julia -C invalid
```

On an `i686-linux-gnu` build, this will hit the "Invalid CPU Name"
branch in `jitlayers.cpp`, which calls `jl_errorf()`.  This in turn
calls `jl_throw()`, which will eventually call `jl_DI_for_fptr` as part
of the backtrace printing process, which fails as the object maps are
not fully initialized.  See the below `gdb` stacktrace for details:

```
$ gdb -batch -ex 'r' -ex 'bt' --args ./julia -C invalid
...
fatal: error thrown and no exception handler available.
ErrorException("Invalid CPU name "invalid".")

Thread 1 "julia" received signal SIGSEGV, Segmentation fault.
0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
1277    /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h: No such file or directory.
 #0  0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
 #1  std::map<unsigned int, JITDebugInfoRegistry::ObjectInfo, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__x=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_map.h:1258
 #2  jl_DI_for_fptr (fptr=4155049385, symsize=symsize@entry=0xffffcfa8, slide=slide@entry=0xffffcfa0, Section=Section@entry=0xffffcfb8, context=context@entry=0xffffcf94) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1181
 #3  0xf75c056a in jl_getFunctionInfo_impl (frames_out=0xffffd03c, pointer=4155049385, skipC=0, noInline=0) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1210
 #4  0xf7a6ca98 in jl_print_native_codeloc (ip=4155049385) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:636
 #5  0xf7a6cd54 in jl_print_bt_entry_codeloc (bt_entry=0xf0798018) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:657
 #6  jlbacktrace () at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:1090
 #7  0xf7a3cd2b in ijl_no_exc_handler (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:605
 #8  0xf7a3d10a in throw_internal (ct=ct@entry=0xf070c010, exception=<optimized out>, exception@entry=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:638
 #9  0xf7a3d330 in ijl_throw (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:654
 #10 0xf7a905aa in ijl_errorf (fmt=fmt@entry=0xf7647cd4 "Invalid CPU name \"%s\".") at /cache/build/default-amdci5-4/julialang/julia-master/src/rtutils.c:77
 #11 0xf75a4b22 in (anonymous namespace)::createTargetMachine () at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:823
 #12 JuliaOJIT::JuliaOJIT (this=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:1044
 #13 0xf7531793 in jl_init_llvm () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8585
 #14 0xf75318a8 in jl_init_codegen_impl () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8648
 #15 0xf7a51a52 in jl_restore_system_image_from_stream (f=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2131
 #16 0xf7a55c03 in ijl_restore_system_image_data (buf=0xe859c1c0 <jl_system_image_data> "8'\031\003", len=125161105) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2184
 #17 0xf7a55cf9 in jl_load_sysimg_so () at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:424
 #18 ijl_restore_system_image (fname=0x80a0900 "/build/bk_download/julia-d78fdad601/lib/julia/sys.so") at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2157
 #19 0xf7a3bdfc in _finish_julia_init (rel=rel@entry=JL_IMAGE_JULIA_HOME, ct=<optimized out>, ptls=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:741
 #20 0xf7a3c8ac in julia_init (rel=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:728
 #21 0xf7a7f61d in jl_repl_entrypoint (argc=<optimized out>, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/src/jlapi.c:705
 #22 0x080490a7 in main (argc=3, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/cli/loader_exe.c:59
```

To prevent this, we simply avoid calling `jl_errorf` this early in the
process, punting the problem to a later PR that can update guard
conditions within `jl_error*`.
staticfloat added a commit that referenced this issue Jun 29, 2022
When calling `jl_error()` or `jl_errorf()`, we must check to see if we
are so early in the bringup process that it is dangerous to attempt to
construct a backtrace because the data structures used to provide line
information are not properly setup.

This can be easily triggered by running:

```
julia -C invalid
```

On an `i686-linux-gnu` build, this will hit the "Invalid CPU Name"
branch in `jitlayers.cpp`, which calls `jl_errorf()`.  This in turn
calls `jl_throw()`, which will eventually call `jl_DI_for_fptr` as part
of the backtrace printing process, which fails as the object maps are
not fully initialized.  See the below `gdb` stacktrace for details:

```
$ gdb -batch -ex 'r' -ex 'bt' --args ./julia -C invalid
...
fatal: error thrown and no exception handler available.
ErrorException("Invalid CPU name "invalid".")

Thread 1 "julia" received signal SIGSEGV, Segmentation fault.
0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
1277    /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h: No such file or directory.
 #0  0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
 #1  std::map<unsigned int, JITDebugInfoRegistry::ObjectInfo, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__x=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_map.h:1258
 #2  jl_DI_for_fptr (fptr=4155049385, symsize=symsize@entry=0xffffcfa8, slide=slide@entry=0xffffcfa0, Section=Section@entry=0xffffcfb8, context=context@entry=0xffffcf94) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1181
 #3  0xf75c056a in jl_getFunctionInfo_impl (frames_out=0xffffd03c, pointer=4155049385, skipC=0, noInline=0) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1210
 #4  0xf7a6ca98 in jl_print_native_codeloc (ip=4155049385) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:636
 #5  0xf7a6cd54 in jl_print_bt_entry_codeloc (bt_entry=0xf0798018) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:657
 #6  jlbacktrace () at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:1090
 #7  0xf7a3cd2b in ijl_no_exc_handler (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:605
 #8  0xf7a3d10a in throw_internal (ct=ct@entry=0xf070c010, exception=<optimized out>, exception@entry=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:638
 #9  0xf7a3d330 in ijl_throw (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:654
 #10 0xf7a905aa in ijl_errorf (fmt=fmt@entry=0xf7647cd4 "Invalid CPU name \"%s\".") at /cache/build/default-amdci5-4/julialang/julia-master/src/rtutils.c:77
 #11 0xf75a4b22 in (anonymous namespace)::createTargetMachine () at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:823
 #12 JuliaOJIT::JuliaOJIT (this=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:1044
 #13 0xf7531793 in jl_init_llvm () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8585
 #14 0xf75318a8 in jl_init_codegen_impl () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8648
 #15 0xf7a51a52 in jl_restore_system_image_from_stream (f=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2131
 #16 0xf7a55c03 in ijl_restore_system_image_data (buf=0xe859c1c0 <jl_system_image_data> "8'\031\003", len=125161105) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2184
 #17 0xf7a55cf9 in jl_load_sysimg_so () at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:424
 #18 ijl_restore_system_image (fname=0x80a0900 "/build/bk_download/julia-d78fdad601/lib/julia/sys.so") at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2157
 #19 0xf7a3bdfc in _finish_julia_init (rel=rel@entry=JL_IMAGE_JULIA_HOME, ct=<optimized out>, ptls=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:741
 #20 0xf7a3c8ac in julia_init (rel=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:728
 #21 0xf7a7f61d in jl_repl_entrypoint (argc=<optimized out>, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/src/jlapi.c:705
 #22 0x080490a7 in main (argc=3, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/cli/loader_exe.c:59
```

To prevent this, we simply avoid calling `jl_errorf` this early in the
process, punting the problem to a later PR that can update guard
conditions within `jl_error*`.
vchuravy pushed a commit that referenced this issue Jul 19, 2022
When calling `jl_error()` or `jl_errorf()`, we must check to see if we
are so early in the bringup process that it is dangerous to attempt to
construct a backtrace because the data structures used to provide line
information are not properly setup.

This can be easily triggered by running:

```
julia -C invalid
```

On an `i686-linux-gnu` build, this will hit the "Invalid CPU Name"
branch in `jitlayers.cpp`, which calls `jl_errorf()`.  This in turn
calls `jl_throw()`, which will eventually call `jl_DI_for_fptr` as part
of the backtrace printing process, which fails as the object maps are
not fully initialized.  See the below `gdb` stacktrace for details:

```
$ gdb -batch -ex 'r' -ex 'bt' --args ./julia -C invalid
...
fatal: error thrown and no exception handler available.
ErrorException("Invalid CPU name "invalid".")

Thread 1 "julia" received signal SIGSEGV, Segmentation fault.
0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
1277    /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h: No such file or directory.
 #0  0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
 #1  std::map<unsigned int, JITDebugInfoRegistry::ObjectInfo, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__x=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_map.h:1258
 #2  jl_DI_for_fptr (fptr=4155049385, symsize=symsize@entry=0xffffcfa8, slide=slide@entry=0xffffcfa0, Section=Section@entry=0xffffcfb8, context=context@entry=0xffffcf94) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1181
 #3  0xf75c056a in jl_getFunctionInfo_impl (frames_out=0xffffd03c, pointer=4155049385, skipC=0, noInline=0) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1210
 #4  0xf7a6ca98 in jl_print_native_codeloc (ip=4155049385) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:636
 #5  0xf7a6cd54 in jl_print_bt_entry_codeloc (bt_entry=0xf0798018) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:657
 #6  jlbacktrace () at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:1090
 #7  0xf7a3cd2b in ijl_no_exc_handler (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:605
 #8  0xf7a3d10a in throw_internal (ct=ct@entry=0xf070c010, exception=<optimized out>, exception@entry=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:638
 #9  0xf7a3d330 in ijl_throw (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:654
 #10 0xf7a905aa in ijl_errorf (fmt=fmt@entry=0xf7647cd4 "Invalid CPU name \"%s\".") at /cache/build/default-amdci5-4/julialang/julia-master/src/rtutils.c:77
 #11 0xf75a4b22 in (anonymous namespace)::createTargetMachine () at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:823
 #12 JuliaOJIT::JuliaOJIT (this=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:1044
 #13 0xf7531793 in jl_init_llvm () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8585
 #14 0xf75318a8 in jl_init_codegen_impl () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8648
 #15 0xf7a51a52 in jl_restore_system_image_from_stream (f=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2131
 #16 0xf7a55c03 in ijl_restore_system_image_data (buf=0xe859c1c0 <jl_system_image_data> "8'\031\003", len=125161105) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2184
 #17 0xf7a55cf9 in jl_load_sysimg_so () at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:424
 #18 ijl_restore_system_image (fname=0x80a0900 "/build/bk_download/julia-d78fdad601/lib/julia/sys.so") at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2157
 #19 0xf7a3bdfc in _finish_julia_init (rel=rel@entry=JL_IMAGE_JULIA_HOME, ct=<optimized out>, ptls=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:741
 #20 0xf7a3c8ac in julia_init (rel=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:728
 #21 0xf7a7f61d in jl_repl_entrypoint (argc=<optimized out>, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/src/jlapi.c:705
 #22 0x080490a7 in main (argc=3, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/cli/loader_exe.c:59
```

To prevent this, we simply avoid calling `jl_errorf` this early in the
process, punting the problem to a later PR that can update guard
conditions within `jl_error*`.

(cherry picked from commit 21ab24e)
pcjentsch pushed a commit to pcjentsch/julia that referenced this issue Aug 18, 2022
When calling `jl_error()` or `jl_errorf()`, we must check to see if we
are so early in the bringup process that it is dangerous to attempt to
construct a backtrace because the data structures used to provide line
information are not properly setup.

This can be easily triggered by running:

```
julia -C invalid
```

On an `i686-linux-gnu` build, this will hit the "Invalid CPU Name"
branch in `jitlayers.cpp`, which calls `jl_errorf()`.  This in turn
calls `jl_throw()`, which will eventually call `jl_DI_for_fptr` as part
of the backtrace printing process, which fails as the object maps are
not fully initialized.  See the below `gdb` stacktrace for details:

```
$ gdb -batch -ex 'r' -ex 'bt' --args ./julia -C invalid
...
fatal: error thrown and no exception handler available.
ErrorException("Invalid CPU name "invalid".")

Thread 1 "julia" received signal SIGSEGV, Segmentation fault.
0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
1277    /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h: No such file or directory.
 #0  0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277
 JuliaLang#1  std::map<unsigned int, JITDebugInfoRegistry::ObjectInfo, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__x=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_map.h:1258
 JuliaLang#2  jl_DI_for_fptr (fptr=4155049385, symsize=symsize@entry=0xffffcfa8, slide=slide@entry=0xffffcfa0, Section=Section@entry=0xffffcfb8, context=context@entry=0xffffcf94) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1181
 JuliaLang#3  0xf75c056a in jl_getFunctionInfo_impl (frames_out=0xffffd03c, pointer=4155049385, skipC=0, noInline=0) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1210
 JuliaLang#4  0xf7a6ca98 in jl_print_native_codeloc (ip=4155049385) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:636
 JuliaLang#5  0xf7a6cd54 in jl_print_bt_entry_codeloc (bt_entry=0xf0798018) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:657
 JuliaLang#6  jlbacktrace () at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:1090
 JuliaLang#7  0xf7a3cd2b in ijl_no_exc_handler (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:605
 JuliaLang#8  0xf7a3d10a in throw_internal (ct=ct@entry=0xf070c010, exception=<optimized out>, exception@entry=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:638
 JuliaLang#9  0xf7a3d330 in ijl_throw (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:654
 JuliaLang#10 0xf7a905aa in ijl_errorf (fmt=fmt@entry=0xf7647cd4 "Invalid CPU name \"%s\".") at /cache/build/default-amdci5-4/julialang/julia-master/src/rtutils.c:77
 JuliaLang#11 0xf75a4b22 in (anonymous namespace)::createTargetMachine () at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:823
 JuliaLang#12 JuliaOJIT::JuliaOJIT (this=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:1044
 JuliaLang#13 0xf7531793 in jl_init_llvm () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8585
 JuliaLang#14 0xf75318a8 in jl_init_codegen_impl () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8648
 JuliaLang#15 0xf7a51a52 in jl_restore_system_image_from_stream (f=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2131
 JuliaLang#16 0xf7a55c03 in ijl_restore_system_image_data (buf=0xe859c1c0 <jl_system_image_data> "8'\031\003", len=125161105) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2184
 JuliaLang#17 0xf7a55cf9 in jl_load_sysimg_so () at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:424
 JuliaLang#18 ijl_restore_system_image (fname=0x80a0900 "/build/bk_download/julia-d78fdad601/lib/julia/sys.so") at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2157
 JuliaLang#19 0xf7a3bdfc in _finish_julia_init (rel=rel@entry=JL_IMAGE_JULIA_HOME, ct=<optimized out>, ptls=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:741
 JuliaLang#20 0xf7a3c8ac in julia_init (rel=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:728
 JuliaLang#21 0xf7a7f61d in jl_repl_entrypoint (argc=<optimized out>, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/src/jlapi.c:705
 JuliaLang#22 0x080490a7 in main (argc=3, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/cli/loader_exe.c:59
```

To prevent this, we simply avoid calling `jl_errorf` this early in the
process, punting the problem to a later PR that can update guard
conditions within `jl_error*`.
github-merge-queue bot pushed a commit that referenced this issue Jul 15, 2023
…d and inlined) (#43322)

A follow up attemp to fix #27988. (close #47493 close #50554)
Examples:
```julia
julia> using LazyArrays
julia> bc = @~ @. 1*(1 + 1) + 1*1;
julia> bc2 = @~ 1 .* 1 .- 1 .* 1 .^2 .+ 1 .* 1 .+ 1 .^ 3;
```
On master:
<details><summary> click for details </summary>
<p>

```julia
julia> @code_typed Broadcast.flatten(bc).f(1,1,1,1,1)
CodeInfo(
1 ─ %1  = Core.getfield(args, 1)::Int64
│   %2  = Core.getfield(args, 2)::Int64
│   %3  = Core.getfield(args, 3)::Int64
│   %4  = Core.getfield(args, 4)::Int64
│   %5  = Core.getfield(args, 5)::Int64
│   %6  = invoke Base.Broadcast.var"#13#14"{Base.Broadcast.var"#16#18"{Base.Broadcast.var"#15#17", Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}}, Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}, Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}, typeof(+)}}(Base.Broadcast.var"#16#18"{Base.Broadcast.var"#15#17", Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}}, Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}, Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}, typeof(+)}(Base.Broadcast.var"#15#17"(), Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}}(Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}(Base.Broadcast.var"#15#17"())), Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}(Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}(Base.Broadcast.var"#25#26"())), Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}(Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}(Base.Broadcast.var"#21#22"())), +))(%1::Int64, %2::Int64, %3::Vararg{Int64}, %4, %5)::Tuple{Int64, Int64, Vararg{Int64}}
│   %7  = Core._apply_iterate(Base.iterate, Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}(Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}(Base.Broadcast.var"#21#22"())), %6)::Tuple{Int64, Int64}
│   %8  = Core._apply_iterate(Base.iterate, Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}(Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}(Base.Broadcast.var"#25#26"())), %6)::Tuple{Vararg{Int64}}
│   %9  = Core._apply_iterate(Base.iterate, Base.Broadcast.var"#16#18"{Base.Broadcast.var"#9#11", Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}}, Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}, Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}, typeof(*)}(Base.Broadcast.var"#9#11"(), Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}}(Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}(Base.Broadcast.var"#15#17"())), Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}(Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}(Base.Broadcast.var"#25#26"())), Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}(Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}(Base.Broadcast.var"#21#22"())), *), %8)::Tuple{Int64}
│   %10 = Core.getfield(%7, 1)::Int64
│   %11 = Core.getfield(%7, 2)::Int64
│   %12 = Base.mul_int(%10, %11)::Int64
│   %13 = Core.getfield(%9, 1)::Int64
│   %14 = Base.add_int(%12, %13)::Int64
└──       return %14
) => Int64

julia> @code_typed Broadcast.flatten(bc2).f(1,1,1,^,1,Val(2),1,1,^,1,Val(3))
CodeInfo(
1 ─ %1  = Core.getfield(args, 1)::Int64
│   %2  = Core.getfield(args, 2)::Int64
│   %3  = Core.getfield(args, 3)::Int64
│   %4  = Core.getfield(args, 5)::Int64
│   %5  = Core.getfield(args, 7)::Int64
│   %6  = Core.getfield(args, 8)::Int64
│   %7  = Core.getfield(args, 10)::Int64
│   %8  = invoke Base.Broadcast.var"#13#14"{Base.Broadcast.var"#16#18"{Base.Broadcast.var"#15#17", Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}}}, Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}}, Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}}, typeof(Base.literal_pow)}}(Base.Broadcast.var"#16#18"{Base.Broadcast.var"#15#17", Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}}}, Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}}, Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}}, typeof(Base.literal_pow)}(Base.Broadcast.var"#15#17"(), Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}}}(Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}}(Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}(Base.Broadcast.var"#15#17"()))), Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}}(Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}(Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}(Base.Broadcast.var"#25#26"()))), Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}}(Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}(Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}(Base.Broadcast.var"#21#22"()))), Base.literal_pow))(%3::Int64, ^::Function, %4::Vararg{Any}, $(QuoteNode(Val{2}())), %5, %6, ^, %7, $(QuoteNode(Val{3}())))::Tuple{Int64, Any, Vararg{Any}}
│   %9  = Core._apply_iterate(Base.iterate, Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}(Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}(Base.Broadcast.var"#21#22"())), %8)::Tuple{Int64, Any}
│   %10 = Core._apply_iterate(Base.iterate, Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}(Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}(Base.Broadcast.var"#25#26"())), %8)::Tuple
│   %11 = Core._apply_iterate(Base.iterate, Base.Broadcast.var"#15#17"(), %10)::Tuple
│   %12 = Core.getfield(%9, 1)::Int64
│   %13 = Core.getfield(%9, 2)::Any
│   %14 = (*)(%12, %13)::Any
│   %15 = Core.tuple(%14)::Tuple{Any}
│   %16 = Core._apply_iterate(Base.iterate, Core.tuple, %15, %11)::Tuple{Any, Vararg{Any}}
│   %17 = Base.mul_int(%1, %2)::Int64
│   %18 = Core.tuple(%17)::Tuple{Int64}
│   %19 = Core._apply_iterate(Base.iterate, Core.tuple, %18, %16)::Tuple{Int64, Any, Vararg{Any}}
│   %20 = Core._apply_iterate(Base.iterate, Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}(Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}(Base.Broadcast.var"#21#22"())), %19)::Tuple{Int64, Any}
│   %21 = Core._apply_iterate(Base.iterate, Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}(Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}(Base.Broadcast.var"#25#26"())), %19)::Tuple
│   %22 = Core._apply_iterate(Base.iterate, Base.Broadcast.var"#16#18"{Base.Broadcast.var"#15#17", Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}}, Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}, Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}, typeof(*)}(Base.Broadcast.var"#15#17"(), Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}}(Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}(Base.Broadcast.var"#15#17"())), Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}(Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}(Base.Broadcast.var"#25#26"())), Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}(Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}(Base.Broadcast.var"#21#22"())), *), %21)::Tuple{Any, Vararg{Any}}
│   %23 = Core.getfield(%20, 1)::Int64
│   %24 = Core.getfield(%20, 2)::Any
│   %25 = (-)(%23, %24)::Any
│   %26 = Core.tuple(%25)::Tuple{Any}
│   %27 = Core._apply_iterate(Base.iterate, Core.tuple, %26, %22)::Tuple{Any, Any, Vararg{Any}}
│   %28 = Core._apply_iterate(Base.iterate, Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}(Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}(Base.Broadcast.var"#21#22"())), %27)::Tuple{Any, Any}
│   %29 = Core._apply_iterate(Base.iterate, Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}(Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}(Base.Broadcast.var"#25#26"())), %27)::Tuple
│   %30 = Core._apply_iterate(Base.iterate, Base.Broadcast.var"#16#18"{Base.Broadcast.var"#9#11", Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}}}, Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}}, Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}}, typeof(Base.literal_pow)}(Base.Broadcast.var"#9#11"(), Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}}}(Base.Broadcast.var"#13#14"{Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}}(Base.Broadcast.var"#13#14"{Base.Broadcast.var"#15#17"}(Base.Broadcast.var"#15#17"()))), Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}}(Base.Broadcast.var"#23#24"{Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}}(Base.Broadcast.var"#23#24"{Base.Broadcast.var"#25#26"}(Base.Broadcast.var"#25#26"()))), Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}}(Base.Broadcast.var"#19#20"{Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}}(Base.Broadcast.var"#19#20"{Base.Broadcast.var"#21#22"}(Base.Broadcast.var"#21#22"()))), Base.literal_pow), %29)::Tuple{Any}
│   %31 = Core.getfield(%28, 1)::Any
│   %32 = Core.getfield(%28, 2)::Any
│   %33 = (+)(%31, %32)::Any
│   %34 = Core.getfield(%30, 1)::Any
│   %35 = (+)(%33, %34)::Any
└──       return %35
) => Any
```
</p>

</details>

On this PR
```julia
julia> @code_typed Broadcast.flatten(bc).f(1,1,1,1,1)
CodeInfo(
1 ─ %1 = Core.getfield(args, 1)::Int64
│   %2 = Core.getfield(args, 2)::Int64
│   %3 = Core.getfield(args, 3)::Int64
│   %4 = Core.getfield(args, 4)::Int64
│   %5 = Core.getfield(args, 5)::Int64
│   %6 = Base.add_int(%2, %3)::Int64
│   %7 = Base.mul_int(%1, %6)::Int64
│   %8 = Base.mul_int(%4, %5)::Int64
│   %9 = Base.add_int(%7, %8)::Int64
└──      return %9
) => Int64

julia> @code_typed Broadcast.flatten(bc2).f(1,1,1,^,1,Val(2),1,1,^,1,Val(3))
CodeInfo(
1 ─ %1  = Core.getfield(args, 1)::Int64
│   %2  = Core.getfield(args, 2)::Int64
│   %3  = Core.getfield(args, 3)::Int64
│   %4  = Core.getfield(args, 5)::Int64
│   %5  = Core.getfield(args, 7)::Int64
│   %6  = Core.getfield(args, 8)::Int64
│   %7  = Core.getfield(args, 10)::Int64
│   %8  = Base.mul_int(%1, %2)::Int64
│   %9  = Base.mul_int(%4, %4)::Int64
│   %10 = Base.mul_int(%3, %9)::Int64
│   %11 = Base.sub_int(%8, %10)::Int64
│   %12 = Base.mul_int(%5, %6)::Int64
│   %13 = Base.add_int(%11, %12)::Int64
│   %14 = Base.mul_int(%7, %7)::Int64
│   %15 = Base.mul_int(%14, %7)::Int64
│   %16 = Base.add_int(%13, %15)::Int64
└──       return %16
) => Int64
```
Keno pushed a commit that referenced this issue Oct 9, 2023
Handle world-age errors in incremental lowering
vchuravy pushed a commit that referenced this issue Jan 23, 2024
)

Stdlib: StyledStrings
URL: https://github.com/JuliaLang/StyledStrings.jl.git
Stdlib branch: main
Julia branch: master
Old commit: 61e7b10
New commit: 302a0d0
Julia version: 1.11.0-DEV
StyledStrings version: 1.11.0
Bump invoked by: @vchuravy
Powered by:
[BumpStdlibs.jl](https://github.com/JuliaLang/BumpStdlibs.jl)

Diff:
JuliaLang/StyledStrings.jl@61e7b10...302a0d0

```
$ git log --oneline 61e7b10..302a0d0
302a0d0 Directly import ScopedValue
3fab35e Fix showing AnnotatedChar with colour
44f5fd7 Restrict the Base docstrings included in the docs
4dee5d9 Add readme
c49ae82 Add documentation task to CI
38ae1b3 Setting the terminal colour to :default is special
2709150 Adjust face merge tests after inheritance change
036631f Swap inheritance processing in face merge
9b35f08 Merge branch 'jn/Statefulempty' [#21]
508ab57 Refactor zip of eachindex to just use pairs
02b3f81 Remove use of length of Stateful
41c8218 Merge branch 'lh/ci-codecov' [#15]
d581fda Disable codecov commenting in every PR
a8a25ba Merge branch 'lh/ci-old-julia' [#13]
b7fca5b Merge branch 'lh/newline' [#16]
984485e Adjust newline parsing to work with CLRF encoding
27b02d1 Test styled"" parsing of \-continued newlines
a7981fe Merge pull request #17 from caleb-allen/add-beep-face
c1ab675 Add repl_prompt_beep face
0d8f5df Merge pull request #18 from JuliaLang/whitespace-fixup
1ef0f90 Nicer whitespace alignment
91a24f8 Disable CI for older versions of Julia
63ff132 add tagbot
792fda7 add CI
506afe3 add .gitignore
74e7135 Load the JULIA_*_COLOR env vars for compat
87d1fb5 Replace within-module eval with hygienic eval
4777e60 Touchups to documented examples
```

Co-authored-by: Dilum Aluthge <dilum@aluthge.com>
quinnj pushed a commit that referenced this issue Jan 26, 2024
`@something` eagerly unwraps any `Some` given to it, while keeping the
variable between its arguments the same. This can be an issue if a
previously unpacked value is used as input to `@something`, leading to a
type instability on more than two arguments (e.g. because of a fallback
to `Some(nothing)`). By using different variables for each argument,
type inference has an easier time handling these cases that are isolated
to single branches anyway.

This also adds some comments to the macro, since it's non-obvious what
it does.

Benchmarking the specific case I encountered this in led to a ~2x
performance improvement on multiple machines.

1.10-beta3/master:

```
[sukera@tower 01]$ jl1100 -q --project=. -L 01.jl -e 'bench()'
v"1.10.0-beta3"

BenchmarkTools.Trial: 10000 samples with 1 evaluation.
 Range (min … max):  38.670 μs … 70.350 μs  ┊ GC (min … max): 0.00% … 0.00%
 Time  (median):     43.340 μs              ┊ GC (median):    0.00%
 Time  (mean ± σ):   43.395 μs ±  1.518 μs  ┊ GC (mean ± σ):  0.00% ± 0.00%

                              ▆█▂ ▁▁                           
  ▂▂▂▂▂▂▂▂▂▁▂▂▂▃▃▃▂▂▃▃▃▂▂▂▂▂▄▇███▆██▄▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ ▃
  38.7 μs         Histogram: frequency by time          48 μs <

 Memory estimate: 0 bytes, allocs estimate: 0.
```

This PR:

```
[sukera@tower 01]$ julia -q --project=. -L 01.jl -e 'bench()'
v"1.11.0-DEV.970"

BenchmarkTools.Trial: 10000 samples with 1 evaluation.
 Range (min … max):  22.820 μs …  44.980 μs  ┊ GC (min … max): 0.00% … 0.00%
 Time  (median):     24.300 μs               ┊ GC (median):    0.00%
 Time  (mean ± σ):   24.370 μs ± 832.239 ns  ┊ GC (mean ± σ):  0.00% ± 0.00%

                ▂▅▇██▇▆▅▁                                       
  ▂▂▂▂▂▂▂▂▃▃▄▅▇███████████▅▄▃▃▂▂▂▂▂▂▂▂▂▂▁▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▂▂ ▃
  22.8 μs         Histogram: frequency by time         27.7 μs <

 Memory estimate: 0 bytes, allocs estimate: 0.
``` 


<details>
<summary>Benchmarking code (spoilers for Advent Of Code 2023 Day 01,
Part 01). Running this requires the input of that Advent Of Code
day.</summary>

```julia
using BenchmarkTools
using InteractiveUtils

isdigit(d::UInt8) = UInt8('0') <= d <= UInt8('9')
someDigit(c::UInt8) = isdigit(c) ? Some(c - UInt8('0')) : nothing

function part1(data)
    total = 0
    may_a = nothing
    may_b = nothing

    for c in data
        digitRes = someDigit(c)
        may_a = @something may_a digitRes Some(nothing)
        may_b = @something digitRes may_b Some(nothing)
        if c == UInt8('\n')
            digit_a = may_a::UInt8
            digit_b = may_b::UInt8
            total += digit_a*0xa + digit_b
            may_a = nothing
            may_b = nothing
        end
    end

    return total
end

function bench()
    data = read("input.txt")
    display(VERSION)
    println()
    display(@benchmark part1($data))
    nothing
end
```
</details>

<details>
<summary>`@code_warntype` before</summary>

```julia
julia> @code_warntype part1(data)
MethodInstance for part1(::Vector{UInt8})
  from part1(data) @ Main ~/Documents/projects/AOC/2023/01/01.jl:7
Arguments
  #self#::Core.Const(part1)
  data::Vector{UInt8}
Locals
  @_3::Union{Nothing, Tuple{UInt8, Int64}}
  may_b::Union{Nothing, UInt8}
  may_a::Union{Nothing, UInt8}
  total::Int64
  c::UInt8
  digit_b::UInt8
  digit_a::UInt8
  val@_10::Any
  val@_11::Any
  digitRes::Union{Nothing, Some{UInt8}}
  @_13::Union{Some{Nothing}, Some{UInt8}, UInt8}
  @_14::Union{Some{Nothing}, Some{UInt8}}
  @_15::Some{Nothing}
  @_16::Union{Some{Nothing}, Some{UInt8}, UInt8}
  @_17::Union{Some{Nothing}, UInt8}
  @_18::Some{Nothing}
Body::Int64
1 ──       (total = 0)
│          (may_a = Main.nothing)
│          (may_b = Main.nothing)
│    %4  = data::Vector{UInt8}
│          (@_3 = Base.iterate(%4))
│    %6  = (@_3 === nothing)::Bool
│    %7  = Base.not_int(%6)::Bool
└───       goto #24 if not %7
2 ┄─       Core.NewvarNode(:(digit_b))
│          Core.NewvarNode(:(digit_a))
│          Core.NewvarNode(:(val@_10))
│    %12 = @_3::Tuple{UInt8, Int64}
│          (c = Core.getfield(%12, 1))
│    %14 = Core.getfield(%12, 2)::Int64
│          (digitRes = Main.someDigit(c))
│          (val@_11 = may_a)
│    %17 = (val@_11::Union{Nothing, UInt8} !== Base.nothing)::Bool
└───       goto #4 if not %17
3 ──       (@_13 = val@_11::UInt8)
└───       goto #11
4 ──       (val@_11 = digitRes)
│    %22 = (val@_11::Union{Nothing, Some{UInt8}} !== Base.nothing)::Bool
└───       goto #6 if not %22
5 ──       (@_14 = val@_11::Some{UInt8})
└───       goto #10
6 ──       (val@_11 = Main.Some(Main.nothing))
│    %27 = (val@_11::Core.Const(Some(nothing)) !== Base.nothing)::Core.Const(true)
└───       goto #8 if not %27
7 ──       (@_15 = val@_11::Core.Const(Some(nothing)))
└───       goto #9
8 ──       Core.Const(:(@_15 = Base.nothing))
9 ┄─       (@_14 = @_15)
10 ┄       (@_13 = @_14)
11 ┄ %34 = @_13::Union{Some{Nothing}, Some{UInt8}, UInt8}
│          (may_a = Base.something(%34))
│          (val@_10 = digitRes)
│    %37 = (val@_10::Union{Nothing, Some{UInt8}} !== Base.nothing)::Bool
└───       goto #13 if not %37
12 ─       (@_16 = val@_10::Some{UInt8})
└───       goto #20
13 ─       (val@_10 = may_b)
│    %42 = (val@_10::Union{Nothing, UInt8} !== Base.nothing)::Bool
└───       goto #15 if not %42
14 ─       (@_17 = val@_10::UInt8)
└───       goto #19
15 ─       (val@_10 = Main.Some(Main.nothing))
│    %47 = (val@_10::Core.Const(Some(nothing)) !== Base.nothing)::Core.Const(true)
└───       goto #17 if not %47
16 ─       (@_18 = val@_10::Core.Const(Some(nothing)))
└───       goto #18
17 ─       Core.Const(:(@_18 = Base.nothing))
18 ┄       (@_17 = @_18)
19 ┄       (@_16 = @_17)
20 ┄ %54 = @_16::Union{Some{Nothing}, Some{UInt8}, UInt8}
│          (may_b = Base.something(%54))
│    %56 = c::UInt8
│    %57 = Main.UInt8('\n')::Core.Const(0x0a)
│    %58 = (%56 == %57)::Bool
└───       goto #22 if not %58
21 ─       (digit_a = Core.typeassert(may_a, Main.UInt8))
│          (digit_b = Core.typeassert(may_b, Main.UInt8))
│    %62 = total::Int64
│    %63 = (digit_a * 0x0a)::UInt8
│    %64 = (%63 + digit_b)::UInt8
│          (total = %62 + %64)
│          (may_a = Main.nothing)
└───       (may_b = Main.nothing)
22 ┄       (@_3 = Base.iterate(%4, %14))
│    %69 = (@_3 === nothing)::Bool
│    %70 = Base.not_int(%69)::Bool
└───       goto #24 if not %70
23 ─       goto #2
24 ┄       return total
```
</details>

<details>
<summary>`@code_native debuginfo=:none` Before </summary>

```julia
julia> @code_native debuginfo=:none part1(data)
	.text
	.file	"part1"
	.globl	julia_part1_418                 # -- Begin function julia_part1_418
	.p2align	4, 0x90
	.type	julia_part1_418,@function
julia_part1_418:                        # @julia_part1_418
# %bb.0:                                # %top
	push	rbp
	mov	rbp, rsp
	push	r15
	push	r14
	push	r13
	push	r12
	push	rbx
	sub	rsp, 40
	mov	rax, qword ptr [rdi + 8]
	test	rax, rax
	je	.LBB0_1
# %bb.2:                                # %L17
	mov	rcx, qword ptr [rdi]
	dec	rax
	mov	r10b, 1
	xor	r14d, r14d
                                        # implicit-def: $r12b
                                        # implicit-def: $r13b
                                        # implicit-def: $r9b
                                        # implicit-def: $sil
	mov	qword ptr [rbp - 64], rax       # 8-byte Spill
	mov	al, 1
	mov	dword ptr [rbp - 48], eax       # 4-byte Spill
                                        # implicit-def: $al
                                        # kill: killed $al
	xor	eax, eax
	mov	qword ptr [rbp - 56], rax       # 8-byte Spill
	mov	qword ptr [rbp - 72], rcx       # 8-byte Spill
                                        # implicit-def: $cl
	jmp	.LBB0_3
	.p2align	4, 0x90
.LBB0_8:                                #   in Loop: Header=BB0_3 Depth=1
	mov	dword ptr [rbp - 48], 0         # 4-byte Folded Spill
.LBB0_24:                               # %post_union_move
                                        #   in Loop: Header=BB0_3 Depth=1
	movzx	r13d, byte ptr [rbp - 41]       # 1-byte Folded Reload
	mov	r12d, r8d
	cmp	qword ptr [rbp - 64], r14       # 8-byte Folded Reload
	je	.LBB0_13
.LBB0_25:                               # %guard_exit113
                                        #   in Loop: Header=BB0_3 Depth=1
	inc	r14
	mov	r10d, ebx
.LBB0_3:                                # %L19
                                        # =>This Inner Loop Header: Depth=1
	mov	rax, qword ptr [rbp - 72]       # 8-byte Reload
	xor	ebx, ebx
	xor	edi, edi
	movzx	r15d, r9b
	movzx	ecx, cl
	movzx	esi, sil
	mov	r11b, 1
                                        # implicit-def: $r9b
	movzx	edx, byte ptr [rax + r14]
	lea	eax, [rdx - 58]
	lea	r8d, [rdx - 48]
	cmp	al, -10
	setae	bl
	setb	dil
	test	r10b, 1
	cmovne	r15d, edi
	mov	edi, 0
	cmovne	ecx, ebx
	mov	bl, 1
	cmovne	esi, edi
	test	r15b, 1
	jne	.LBB0_7
# %bb.4:                                # %L76
                                        #   in Loop: Header=BB0_3 Depth=1
	mov	r11b, 2
	test	cl, 1
	jne	.LBB0_5
# %bb.6:                                # %L78
                                        #   in Loop: Header=BB0_3 Depth=1
	mov	ebx, r10d
	mov	r9d, r15d
	mov	byte ptr [rbp - 41], r13b       # 1-byte Spill
	test	sil, 1
	je	.LBB0_26
.LBB0_7:                                # %L82
                                        #   in Loop: Header=BB0_3 Depth=1
	cmp	al, -11
	jbe	.LBB0_9
	jmp	.LBB0_8
	.p2align	4, 0x90
.LBB0_5:                                #   in Loop: Header=BB0_3 Depth=1
	mov	ecx, r8d
	mov	sil, 1
	xor	ebx, ebx
	mov	byte ptr [rbp - 41], r8b        # 1-byte Spill
	xor	r9d, r9d
	xor	ecx, ecx
	cmp	al, -11
	ja	.LBB0_8
.LBB0_9:                                # %L90
                                        #   in Loop: Header=BB0_3 Depth=1
	test	byte ptr [rbp - 48], 1          # 1-byte Folded Reload
	jne	.LBB0_23
# %bb.10:                               # %L115
                                        #   in Loop: Header=BB0_3 Depth=1
	cmp	dl, 10
	jne	.LBB0_11
# %bb.14:                               # %L122
                                        #   in Loop: Header=BB0_3 Depth=1
	test	r15b, 1
	jne	.LBB0_15
# %bb.12:                               # %L130.thread
                                        #   in Loop: Header=BB0_3 Depth=1
	movzx	eax, byte ptr [rbp - 41]        # 1-byte Folded Reload
	mov	bl, 1
	add	eax, eax
	lea	eax, [rax + 4*rax]
	add	al, r12b
	movzx	eax, al
	add	qword ptr [rbp - 56], rax       # 8-byte Folded Spill
	mov	al, 1
	mov	dword ptr [rbp - 48], eax       # 4-byte Spill
	cmp	qword ptr [rbp - 64], r14       # 8-byte Folded Reload
	jne	.LBB0_25
	jmp	.LBB0_13
	.p2align	4, 0x90
.LBB0_23:                               # %L115.thread
                                        #   in Loop: Header=BB0_3 Depth=1
	mov	al, 1
                                        # implicit-def: $r8b
	mov	dword ptr [rbp - 48], eax       # 4-byte Spill
	cmp	dl, 10
	jne	.LBB0_24
	jmp	.LBB0_21
.LBB0_11:                               #   in Loop: Header=BB0_3 Depth=1
	mov	r8d, r12d
	jmp	.LBB0_24
.LBB0_1:
	xor	eax, eax
	mov	qword ptr [rbp - 56], rax       # 8-byte Spill
.LBB0_13:                               # %L159
	mov	rax, qword ptr [rbp - 56]       # 8-byte Reload
	add	rsp, 40
	pop	rbx
	pop	r12
	pop	r13
	pop	r14
	pop	r15
	pop	rbp
	ret
.LBB0_21:                               # %L122.thread
	test	r15b, 1
	jne	.LBB0_15
# %bb.22:                               # %post_box_union58
	movabs	rdi, offset .L_j_str1
	movabs	rax, offset ijl_type_error
	movabs	rsi, 140008511215408
	movabs	rdx, 140008667209736
	call	rax
.LBB0_15:                               # %fail
	cmp	r11b, 1
	je	.LBB0_19
# %bb.16:                               # %fail
	movzx	eax, r11b
	cmp	eax, 2
	jne	.LBB0_17
# %bb.20:                               # %box_union54
	movzx	eax, byte ptr [rbp - 41]        # 1-byte Folded Reload
	movabs	rcx, offset jl_boxed_uint8_cache
	mov	rdx, qword ptr [rcx + 8*rax]
	jmp	.LBB0_18
.LBB0_26:                               # %L80
	movabs	rax, offset ijl_throw
	movabs	rdi, 140008495049392
	call	rax
.LBB0_19:                               # %box_union
	movabs	rdx, 140008667209736
	jmp	.LBB0_18
.LBB0_17:
	xor	edx, edx
.LBB0_18:                               # %post_box_union
	movabs	rdi, offset .L_j_str1
	movabs	rax, offset ijl_type_error
	movabs	rsi, 140008511215408
	call	rax
.Lfunc_end0:
	.size	julia_part1_418, .Lfunc_end0-julia_part1_418
                                        # -- End function
	.type	.L_j_str1,@object               # @_j_str1
	.section	.rodata.str1.1,"aMS",@progbits,1
.L_j_str1:
	.asciz	"typeassert"
	.size	.L_j_str1, 11

	.section	".note.GNU-stack","",@progbits
```
</details>

<details>
<summary>`@code_warntype` After</summary>

```julia

[sukera@tower 01]$ julia -q --project=. -L 01.jl
julia> data = read("input.txt");

julia> @code_warntype part1(data)
MethodInstance for part1(::Vector{UInt8})
  from part1(data) @ Main ~/Documents/projects/AOC/2023/01/01.jl:7
Arguments
  #self#::Core.Const(part1)
  data::Vector{UInt8}
Locals
  @_3::Union{Nothing, Tuple{UInt8, Int64}}
  may_b::Union{Nothing, UInt8}
  may_a::Union{Nothing, UInt8}
  total::Int64
  val@_7::Union{}
  val@_8::Union{}
  c::UInt8
  digit_b::UInt8
  digit_a::UInt8
  ##215::Some{Nothing}
  ##216::Union{Nothing, UInt8}
  ##217::Union{Nothing, Some{UInt8}}
  ##212::Some{Nothing}
  ##213::Union{Nothing, Some{UInt8}}
  ##214::Union{Nothing, UInt8}
  digitRes::Union{Nothing, Some{UInt8}}
  @_19::Union{Nothing, UInt8}
  @_20::Union{Nothing, UInt8}
  @_21::Nothing
  @_22::Union{Nothing, UInt8}
  @_23::Union{Nothing, UInt8}
  @_24::Nothing
Body::Int64
1 ──        (total = 0)
│           (may_a = Main.nothing)
│           (may_b = Main.nothing)
│    %4   = data::Vector{UInt8}
│           (@_3 = Base.iterate(%4))
│    %6   = @_3::Union{Nothing, Tuple{UInt8, Int64}}
│    %7   = (%6 === nothing)::Bool
│    %8   = Base.not_int(%7)::Bool
└───        goto #24 if not %8
2 ┄─        Core.NewvarNode(:(val@_7))
│           Core.NewvarNode(:(val@_8))
│           Core.NewvarNode(:(digit_b))
│           Core.NewvarNode(:(digit_a))
│           Core.NewvarNode(:(##215))
│           Core.NewvarNode(:(##216))
│           Core.NewvarNode(:(##217))
│           Core.NewvarNode(:(##212))
│           Core.NewvarNode(:(##213))
│    %19  = @_3::Tuple{UInt8, Int64}
│           (c = Core.getfield(%19, 1))
│    %21  = Core.getfield(%19, 2)::Int64
│    %22  = c::UInt8
│           (digitRes = Main.someDigit(%22))
│    %24  = may_a::Union{Nothing, UInt8}
│           (##214 = %24)
│    %26  = Base.:!::Core.Const(!)
│    %27  = ##214::Union{Nothing, UInt8}
│    %28  = Base.isnothing(%27)::Bool
│    %29  = (%26)(%28)::Bool
└───        goto #4 if not %29
3 ── %31  = ##214::UInt8
│           (@_19 = Base.something(%31))
└───        goto #11
4 ── %34  = digitRes::Union{Nothing, Some{UInt8}}
│           (##213 = %34)
│    %36  = Base.:!::Core.Const(!)
│    %37  = ##213::Union{Nothing, Some{UInt8}}
│    %38  = Base.isnothing(%37)::Bool
│    %39  = (%36)(%38)::Bool
└───        goto #6 if not %39
5 ── %41  = ##213::Some{UInt8}
│           (@_20 = Base.something(%41))
└───        goto #10
6 ── %44  = Main.Some::Core.Const(Some)
│    %45  = Main.nothing::Core.Const(nothing)
│           (##212 = (%44)(%45))
│    %47  = Base.:!::Core.Const(!)
│    %48  = ##212::Core.Const(Some(nothing))
│    %49  = Base.isnothing(%48)::Core.Const(false)
│    %50  = (%47)(%49)::Core.Const(true)
└───        goto #8 if not %50
7 ── %52  = ##212::Core.Const(Some(nothing))
│           (@_21 = Base.something(%52))
└───        goto #9
8 ──        Core.Const(nothing)
│           Core.Const(:(val@_8 = Base.something(Base.nothing)))
│           Core.Const(nothing)
│           Core.Const(:(val@_8))
└───        Core.Const(:(@_21 = %58))
9 ┄─ %60  = @_21::Core.Const(nothing)
└───        (@_20 = %60)
10 ┄ %62  = @_20::Union{Nothing, UInt8}
└───        (@_19 = %62)
11 ┄ %64  = @_19::Union{Nothing, UInt8}
│           (may_a = %64)
│    %66  = digitRes::Union{Nothing, Some{UInt8}}
│           (##217 = %66)
│    %68  = Base.:!::Core.Const(!)
│    %69  = ##217::Union{Nothing, Some{UInt8}}
│    %70  = Base.isnothing(%69)::Bool
│    %71  = (%68)(%70)::Bool
└───        goto #13 if not %71
12 ─ %73  = ##217::Some{UInt8}
│           (@_22 = Base.something(%73))
└───        goto #20
13 ─ %76  = may_b::Union{Nothing, UInt8}
│           (##216 = %76)
│    %78  = Base.:!::Core.Const(!)
│    %79  = ##216::Union{Nothing, UInt8}
│    %80  = Base.isnothing(%79)::Bool
│    %81  = (%78)(%80)::Bool
└───        goto #15 if not %81
14 ─ %83  = ##216::UInt8
│           (@_23 = Base.something(%83))
└───        goto #19
15 ─ %86  = Main.Some::Core.Const(Some)
│    %87  = Main.nothing::Core.Const(nothing)
│           (##215 = (%86)(%87))
│    %89  = Base.:!::Core.Const(!)
│    %90  = ##215::Core.Const(Some(nothing))
│    %91  = Base.isnothing(%90)::Core.Const(false)
│    %92  = (%89)(%91)::Core.Const(true)
└───        goto #17 if not %92
16 ─ %94  = ##215::Core.Const(Some(nothing))
│           (@_24 = Base.something(%94))
└───        goto #18
17 ─        Core.Const(nothing)
│           Core.Const(:(val@_7 = Base.something(Base.nothing)))
│           Core.Const(nothing)
│           Core.Const(:(val@_7))
└───        Core.Const(:(@_24 = %100))
18 ┄ %102 = @_24::Core.Const(nothing)
└───        (@_23 = %102)
19 ┄ %104 = @_23::Union{Nothing, UInt8}
└───        (@_22 = %104)
20 ┄ %106 = @_22::Union{Nothing, UInt8}
│           (may_b = %106)
│    %108 = Main.:(==)::Core.Const(==)
│    %109 = c::UInt8
│    %110 = Main.UInt8('\n')::Core.Const(0x0a)
│    %111 = (%108)(%109, %110)::Bool
└───        goto #22 if not %111
21 ─ %113 = may_a::Union{Nothing, UInt8}
│           (digit_a = Core.typeassert(%113, Main.UInt8))
│    %115 = may_b::Union{Nothing, UInt8}
│           (digit_b = Core.typeassert(%115, Main.UInt8))
│    %117 = Main.:+::Core.Const(+)
│    %118 = total::Int64
│    %119 = Main.:+::Core.Const(+)
│    %120 = Main.:*::Core.Const(*)
│    %121 = digit_a::UInt8
│    %122 = (%120)(%121, 0x0a)::UInt8
│    %123 = digit_b::UInt8
│    %124 = (%119)(%122, %123)::UInt8
│           (total = (%117)(%118, %124))
│           (may_a = Main.nothing)
└───        (may_b = Main.nothing)
22 ┄        (@_3 = Base.iterate(%4, %21))
│    %129 = @_3::Union{Nothing, Tuple{UInt8, Int64}}
│    %130 = (%129 === nothing)::Bool
│    %131 = Base.not_int(%130)::Bool
└───        goto #24 if not %131
23 ─        goto #2
24 ┄ %134 = total::Int64
└───        return %134
```
</details>


<details>
<summary>`@code_native debuginfo=:none` After </summary>

```julia

julia> @code_native debuginfo=:none part1(data)
	.text
	.file	"part1"
	.globl	julia_part1_1203                # -- Begin function julia_part1_1203
	.p2align	4, 0x90
	.type	julia_part1_1203,@function
julia_part1_1203:                       # @julia_part1_1203
; Function Signature: part1(Array{UInt8, 1})
# %bb.0:                                # %top
	#DEBUG_VALUE: part1:data <- [DW_OP_deref] $rdi
	push	rbp
	mov	rbp, rsp
	push	r15
	push	r14
	push	r13
	push	r12
	push	rbx
	sub	rsp, 40
	vxorps	xmm0, xmm0, xmm0
	#APP
	mov	rax, qword ptr fs:[0]
	#NO_APP
	lea	rdx, [rbp - 64]
	vmovaps	xmmword ptr [rbp - 64], xmm0
	mov	qword ptr [rbp - 48], 0
	mov	rcx, qword ptr [rax - 8]
	mov	qword ptr [rbp - 64], 4
	mov	rax, qword ptr [rcx]
	mov	qword ptr [rbp - 72], rcx       # 8-byte Spill
	mov	qword ptr [rbp - 56], rax
	mov	qword ptr [rcx], rdx
	#DEBUG_VALUE: part1:data <- [DW_OP_deref] 0
	mov	r15, qword ptr [rdi + 16]
	test	r15, r15
	je	.LBB0_1
# %bb.2:                                # %L34
	mov	r14, qword ptr [rdi]
	dec	r15
	mov	r11b, 1
	mov	r13b, 1
                                        # implicit-def: $r12b
                                        # implicit-def: $r10b
	xor	eax, eax
	jmp	.LBB0_3
	.p2align	4, 0x90
.LBB0_4:                                #   in Loop: Header=BB0_3 Depth=1
	xor	r11d, r11d
	mov	ebx, edi
	mov	r10d, r8d
.LBB0_9:                                # %L114
                                        #   in Loop: Header=BB0_3 Depth=1
	mov	r12d, esi
	test	r15, r15
	je	.LBB0_12
.LBB0_10:                               # %guard_exit126
                                        #   in Loop: Header=BB0_3 Depth=1
	inc	r14
	dec	r15
	mov	r13d, ebx
.LBB0_3:                                # %L36
                                        # =>This Inner Loop Header: Depth=1
	movzx	edx, byte ptr [r14]
	test	r13b, 1
	movzx	edi, r13b
	mov	ebx, 1
	mov	ecx, 0
	cmove	ebx, edi
	cmovne	edi, ecx
	movzx	ecx, r10b
	lea	esi, [rdx - 48]
	lea	r9d, [rdx - 58]
	movzx	r8d, sil
	cmove	r8d, ecx
	cmp	r9b, -11
	ja	.LBB0_4
# %bb.5:                                # %L89
                                        #   in Loop: Header=BB0_3 Depth=1
	test	r11b, 1
	jne	.LBB0_8
# %bb.6:                                # %L102
                                        #   in Loop: Header=BB0_3 Depth=1
	cmp	dl, 10
	jne	.LBB0_7
# %bb.13:                               # %L106
                                        #   in Loop: Header=BB0_3 Depth=1
	test	r13b, 1
	jne	.LBB0_14
# %bb.11:                               # %L114.thread
                                        #   in Loop: Header=BB0_3 Depth=1
	add	ecx, ecx
	mov	bl, 1
	mov	r11b, 1
	lea	ecx, [rcx + 4*rcx]
	add	cl, r12b
	movzx	ecx, cl
	add	rax, rcx
	test	r15, r15
	jne	.LBB0_10
	jmp	.LBB0_12
	.p2align	4, 0x90
.LBB0_8:                                # %L102.thread
                                        #   in Loop: Header=BB0_3 Depth=1
	mov	r11b, 1
                                        # implicit-def: $sil
	cmp	dl, 10
	jne	.LBB0_9
	jmp	.LBB0_15
.LBB0_7:                                #   in Loop: Header=BB0_3 Depth=1
	mov	esi, r12d
	jmp	.LBB0_9
.LBB0_1:
	xor	eax, eax
.LBB0_12:                               # %L154
	mov	rcx, qword ptr [rbp - 56]
	mov	rdx, qword ptr [rbp - 72]       # 8-byte Reload
	mov	qword ptr [rdx], rcx
	add	rsp, 40
	pop	rbx
	pop	r12
	pop	r13
	pop	r14
	pop	r15
	pop	rbp
	ret
.LBB0_15:                               # %L106.thread
	test	r13b, 1
	jne	.LBB0_14
# %bb.16:                               # %post_box_union47
	movabs	rax, offset jl_nothing
	movabs	rcx, offset jl_small_typeof
	movabs	rdi, offset ".L_j_str_typeassert#1"
	mov	rdx, qword ptr [rax]
	mov	rsi, qword ptr [rcx + 336]
	movabs	rax, offset ijl_type_error
	mov	qword ptr [rbp - 48], rsi
	call	rax
.LBB0_14:                               # %post_box_union
	movabs	rax, offset jl_nothing
	movabs	rcx, offset jl_small_typeof
	movabs	rdi, offset ".L_j_str_typeassert#1"
	mov	rdx, qword ptr [rax]
	mov	rsi, qword ptr [rcx + 336]
	movabs	rax, offset ijl_type_error
	mov	qword ptr [rbp - 48], rsi
	call	rax
.Lfunc_end0:
	.size	julia_part1_1203, .Lfunc_end0-julia_part1_1203
                                        # -- End function
	.type	".L_j_str_typeassert#1",@object # @"_j_str_typeassert#1"
	.section	.rodata.str1.1,"aMS",@progbits,1
".L_j_str_typeassert#1":
	.asciz	"typeassert"
	.size	".L_j_str_typeassert#1", 11

	.section	".note.GNU-stack","",@progbits
```
</details>

Co-authored-by: Sukera <Seelengrab@users.noreply.github.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants