-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
better internal interface for extending broadcast
#22060
Comments
This seems like a good solution. It reminds me of the solution we had to package precompilation - one non-precompile-enabled package disables all its dependents from precompiling, just like one non-fusing operand spoils a whole call. That put pressure on package authors to support precompiling, but gave them some time and flexibility to do so and preserved backwards compatibility. This solution gives us a similar path forward for supporting fusing across the Julia ecosystem. |
That would also fix #19313 (though I'm less interested in it since |
I am right in saying that the branch in the lowered-code would be optimized away during specialization on input types? If used within a function where |
@oxinabox, yes. |
Couldn't we do the same thing without this feature? For example, if we want to overload
so for |
@ylxdzsw, good trick! That might well work. |
Could that be seen as "lifting" the |
It's a neat trick but I'm not sure how it will go in practice; at the least it's going to have an impact on error messages and traces. How would you get multiple types (which could each be fusing or not) to play nicely together? It seems like you'd need some standard |
@MikeInnes, it is more complicated, but think it could be done entirely with dispatch by defining a |
The problem with that is that we are talking about a diverse set of array-like containers that come from different libraries. I am definitely in favour of the trait-like implementation. |
Indeed, even calling some of them containers is misleading. I'm interested in @ylxdzsw "trick", I think we would need to try it out, to get clarity |
also @denizyuret This came up quite a few times at JuliaCon so I put something together to hack around it. Please try it out and let me know how it goes. I have to say, I'm pretty disappointed that Base has left a bunch of packages out in the cold like this. I hope it's worth it to save some characters on |
Can we add this to the 1.0 milestone? |
While I've added this to the 1.0 milestone, we may want to consider internals of how dot-fusion syntax works to be unstable. |
broadcast
We've decided that broadcast internals can change over 1.x. |
This patch represents the combined efforts of four individuals, over 60 commits, and an iterated design over (at least) three pull requests that spanned nearly an entire year (closes #22063, #23692, #25377 by superceding them). This introduces a pure Julia data structure that represents a fused broadcast expression. For example, the expression `2 .* (x .+ 1)` lowers to: ```julia julia> Meta.@lower 2 .* (x .+ 1) :($(Expr(:thunk, CodeInfo(:(begin Core.SSAValue(0) = (Base.getproperty)(Base.Broadcast, :materialize) Core.SSAValue(1) = (Base.getproperty)(Base.Broadcast, :make) Core.SSAValue(2) = (Base.getproperty)(Base.Broadcast, :make) Core.SSAValue(3) = (Core.SSAValue(2))(+, x, 1) Core.SSAValue(4) = (Core.SSAValue(1))(*, 2, Core.SSAValue(3)) Core.SSAValue(5) = (Core.SSAValue(0))(Core.SSAValue(4)) return Core.SSAValue(5) end))))) ``` Or, slightly more readably as: ```julia using .Broadcast: materialize, make materialize(make(*, 2, make(+, x, 1))) ``` The `Broadcast.make` function serves two purposes. Its primary purpose is to construct the `Broadcast.Broadcasted` objects that hold onto the function, the tuple of arguments (potentially including nested `Broadcasted` arguments), and sometimes a set of `axes` to include knowledge of the outer shape. The secondary purpose, however, is to allow an "out" for objects that _don't_ want to participate in fusion. For example, if `x` is a range in the above `2 .* (x .+ 1)` expression, it needn't allocate an array and operate elementwise — it can just compute and return a new range. Thus custom structures are able to specialize `Broadcast.make(f, args...)` just as they'd specialize on `f` normally to return an immediate result. `Broadcast.materialize` is identity for everything _except_ `Broadcasted` objects for which it allocates an appropriate result and computes the broadcast. It does two things: it `initialize`s the outermost `Broadcasted` object to compute its axes and then `copy`s it. Similarly, an in-place fused broadcast like `y .= 2 .* (x .+ 1)` uses the exact same expression tree to compute the right-hand side of the expression as above, and then uses `materialize!(y, make(*, 2, make(+, x, 1)))` to `instantiate` the `Broadcasted` expression tree and then `copyto!` it into the given destination. All-together, this forms a complete API for custom types to extend and customize the behavior of broadcast (fixes #22060). It uses the existing `BroadcastStyle`s throughout to simplify dispatch on many arguments: * Custom types can opt-out of broadcast fusion by specializing `Broadcast.make(f, args...)` or `Broadcast.make(::BroadcastStyle, f, args...)`. * The `Broadcasted` object computes and stores the type of the combined `BroadcastStyle` of its arguments as its first type parameter, allowing for easy dispatch and specialization. * Custom Broadcast storage is still allocated via `broadcast_similar`, however instead of passing just a function as a first argument, the entire `Broadcasted` object is passed as a final argument. This potentially allows for much more runtime specialization dependent upon the exact expression given. * Custom broadcast implmentations for a `CustomStyle` are defined by specializing `copy(bc::Broadcasted{CustomStyle})` or `copyto!(dest::AbstractArray, bc::Broadcasted{CustomStyle})`. * Fallback broadcast specializations for a given output object of type `Dest` (for the `DefaultArrayStyle` or another such style that hasn't implemented assignments into such an object) are defined by specializing `copyto(dest::Dest, bc::Broadcasted{Nothing})`. As it fully supports range broadcasting, this now deprecates `(1:5) + 2` to `.+`, just as had been done for all `AbstractArray`s in general. As a first-mover proof of concept, LinearAlgebra uses this new system to improve broadcasting over structured arrays. Before, broadcasting over a structured matrix would result in a sparse array. Now, broadcasting over a structured matrix will _either_ return an appropriately structured matrix _or_ a dense array. This does incur a type instability (in the form of a discriminated union) in some situations, but thanks to type-based introspection of the `Broadcasted` wrapper commonly used functions can be special cased to be type stable. For example: ```julia julia> f(d) = round.(Int, d) f (generic function with 1 method) julia> @inferred f(Diagonal(rand(3))) 3×3 Diagonal{Int64,Array{Int64,1}}: 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 1 julia> @inferred Diagonal(rand(3)) .* 3 ERROR: return type Diagonal{Float64,Array{Float64,1}} does not match inferred return type Union{Array{Float64,2}, Diagonal{Float64,Array{Float64,1}}} Stacktrace: [1] error(::String) at ./error.jl:33 [2] top-level scope julia> @inferred Diagonal(1:4) .+ Bidiagonal(rand(4), rand(3), 'U') .* Tridiagonal(1:3, 1:4, 1:3) 4×4 Tridiagonal{Float64,Array{Float64,1}}: 1.30771 0.838589 ⋅ ⋅ 0.0 3.89109 0.0459757 ⋅ ⋅ 0.0 4.48033 2.51508 ⋅ ⋅ 0.0 6.23739 ``` In addition to the issues referenced above, it fixes: * Fixes #19313, #22053, #23445, and #24586: Literals are no longer treated specially in a fused broadcast; they're just arguments in a `Broadcasted` object like everything else. * Fixes #21094: Since broadcasting is now represented by a pure Julia datastructure it can be created within `@generated` functions and serialized. * Fixes #26097: The fallback destination-array specialization method of `copyto!` is specifically implemented as `Broadcasted{Nothing}` and will not be confused by `nothing` arguments. * Fixes the broadcast-specific element of #25499: The default base broadcast implementation no longer depends upon `Base._return_type` to allocate its array (except in the empty or concretely-type cases). Note that the sparse implementation (#19595) is still dependent upon inference and is _not_ fixed. * Fixes #25340: Functions are treated like normal values just like arguments and only evaluated once. * Fixes #22255, and is performant with 12+ fused broadcasts. Okay, that one was fixed on master already, but this fixes it now, too. * Fixes #25521. * The performance of this patch has been thoroughly tested through its iterative development process in #25377. There remain [two classes of performance regressions](#25377) that Nanosoldier flagged. * #25691: Propagation of constant literals sill lose their constant-ness upon going through the broadcast machinery. I believe quite a large number of functions would need to be marked as `@pure` to support this -- including functions that are intended to be specialized. (For bookkeeping, this is the squashed version of the [teh-jn/lazydotfuse](#25377) branch as of a1d4e7e. Squashed and separated out to make it easier to review and commit) Co-authored-by: Tim Holy <tim.holy@gmail.com> Co-authored-by: Jameson Nash <vtjnash@gmail.com> Co-authored-by: Andrew Keller <ajkeller34@users.noreply.github.com>
This patch represents the combined efforts of four individuals, over 60 commits, and an iterated design over (at least) three pull requests that spanned nearly an entire year (closes #22063, #23692, #25377 by superceding them). This introduces a pure Julia data structure that represents a fused broadcast expression. For example, the expression `2 .* (x .+ 1)` lowers to: ```julia julia> Meta.@lower 2 .* (x .+ 1) :($(Expr(:thunk, CodeInfo(:(begin Core.SSAValue(0) = (Base.getproperty)(Base.Broadcast, :materialize) Core.SSAValue(1) = (Base.getproperty)(Base.Broadcast, :make) Core.SSAValue(2) = (Base.getproperty)(Base.Broadcast, :make) Core.SSAValue(3) = (Core.SSAValue(2))(+, x, 1) Core.SSAValue(4) = (Core.SSAValue(1))(*, 2, Core.SSAValue(3)) Core.SSAValue(5) = (Core.SSAValue(0))(Core.SSAValue(4)) return Core.SSAValue(5) end))))) ``` Or, slightly more readably as: ```julia using .Broadcast: materialize, make materialize(make(*, 2, make(+, x, 1))) ``` The `Broadcast.make` function serves two purposes. Its primary purpose is to construct the `Broadcast.Broadcasted` objects that hold onto the function, the tuple of arguments (potentially including nested `Broadcasted` arguments), and sometimes a set of `axes` to include knowledge of the outer shape. The secondary purpose, however, is to allow an "out" for objects that _don't_ want to participate in fusion. For example, if `x` is a range in the above `2 .* (x .+ 1)` expression, it needn't allocate an array and operate elementwise — it can just compute and return a new range. Thus custom structures are able to specialize `Broadcast.make(f, args...)` just as they'd specialize on `f` normally to return an immediate result. `Broadcast.materialize` is identity for everything _except_ `Broadcasted` objects for which it allocates an appropriate result and computes the broadcast. It does two things: it `initialize`s the outermost `Broadcasted` object to compute its axes and then `copy`s it. Similarly, an in-place fused broadcast like `y .= 2 .* (x .+ 1)` uses the exact same expression tree to compute the right-hand side of the expression as above, and then uses `materialize!(y, make(*, 2, make(+, x, 1)))` to `instantiate` the `Broadcasted` expression tree and then `copyto!` it into the given destination. All-together, this forms a complete API for custom types to extend and customize the behavior of broadcast (fixes #22060). It uses the existing `BroadcastStyle`s throughout to simplify dispatch on many arguments: * Custom types can opt-out of broadcast fusion by specializing `Broadcast.make(f, args...)` or `Broadcast.make(::BroadcastStyle, f, args...)`. * The `Broadcasted` object computes and stores the type of the combined `BroadcastStyle` of its arguments as its first type parameter, allowing for easy dispatch and specialization. * Custom Broadcast storage is still allocated via `broadcast_similar`, however instead of passing just a function as a first argument, the entire `Broadcasted` object is passed as a final argument. This potentially allows for much more runtime specialization dependent upon the exact expression given. * Custom broadcast implmentations for a `CustomStyle` are defined by specializing `copy(bc::Broadcasted{CustomStyle})` or `copyto!(dest::AbstractArray, bc::Broadcasted{CustomStyle})`. * Fallback broadcast specializations for a given output object of type `Dest` (for the `DefaultArrayStyle` or another such style that hasn't implemented assignments into such an object) are defined by specializing `copyto(dest::Dest, bc::Broadcasted{Nothing})`. As it fully supports range broadcasting, this now deprecates `(1:5) + 2` to `.+`, just as had been done for all `AbstractArray`s in general. As a first-mover proof of concept, LinearAlgebra uses this new system to improve broadcasting over structured arrays. Before, broadcasting over a structured matrix would result in a sparse array. Now, broadcasting over a structured matrix will _either_ return an appropriately structured matrix _or_ a dense array. This does incur a type instability (in the form of a discriminated union) in some situations, but thanks to type-based introspection of the `Broadcasted` wrapper commonly used functions can be special cased to be type stable. For example: ```julia julia> f(d) = round.(Int, d) f (generic function with 1 method) julia> @inferred f(Diagonal(rand(3))) 3×3 Diagonal{Int64,Array{Int64,1}}: 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 1 julia> @inferred Diagonal(rand(3)) .* 3 ERROR: return type Diagonal{Float64,Array{Float64,1}} does not match inferred return type Union{Array{Float64,2}, Diagonal{Float64,Array{Float64,1}}} Stacktrace: [1] error(::String) at ./error.jl:33 [2] top-level scope julia> @inferred Diagonal(1:4) .+ Bidiagonal(rand(4), rand(3), 'U') .* Tridiagonal(1:3, 1:4, 1:3) 4×4 Tridiagonal{Float64,Array{Float64,1}}: 1.30771 0.838589 ⋅ ⋅ 0.0 3.89109 0.0459757 ⋅ ⋅ 0.0 4.48033 2.51508 ⋅ ⋅ 0.0 6.23739 ``` In addition to the issues referenced above, it fixes: * Fixes #19313, #22053, #23445, and #24586: Literals are no longer treated specially in a fused broadcast; they're just arguments in a `Broadcasted` object like everything else. * Fixes #21094: Since broadcasting is now represented by a pure Julia datastructure it can be created within `@generated` functions and serialized. * Fixes #26097: The fallback destination-array specialization method of `copyto!` is specifically implemented as `Broadcasted{Nothing}` and will not be confused by `nothing` arguments. * Fixes the broadcast-specific element of #25499: The default base broadcast implementation no longer depends upon `Base._return_type` to allocate its array (except in the empty or concretely-type cases). Note that the sparse implementation (#19595) is still dependent upon inference and is _not_ fixed. * Fixes #25340: Functions are treated like normal values just like arguments and only evaluated once. * Fixes #22255, and is performant with 12+ fused broadcasts. Okay, that one was fixed on master already, but this fixes it now, too. * Fixes #25521. * The performance of this patch has been thoroughly tested through its iterative development process in #25377. There remain [two classes of performance regressions](#25377) that Nanosoldier flagged. * #25691: Propagation of constant literals sill lose their constant-ness upon going through the broadcast machinery. I believe quite a large number of functions would need to be marked as `@pure` to support this -- including functions that are intended to be specialized. (For bookkeeping, this is the squashed version of the [teh-jn/lazydotfuse](#25377) branch as of a1d4e7e. Squashed and separated out to make it easier to review and commit) Co-authored-by: Tim Holy <tim.holy@gmail.com> Co-authored-by: Jameson Nash <vtjnash@gmail.com> Co-authored-by: Andrew Keller <ajkeller34@users.noreply.github.com>
@MikeInnes suggested in FluxML/Flux.jl#31 that we change the dot-call lowering in such a way as to allow it to be disabled for custom types (which may reside on a GPU or something and support only a small set of functions).
For example, currently
x .+ y .* x.^z
is lowered tobroadcast((x,y,z) -> x+y*x^z, x,y,z)
. This could instead be lowered to:with
Base.isfusing(...) = true
being the default. This would also address #22053 (cc @malmaud).Pro:
Makes life easier in the short run for containers based on external libraries that only support a few efficient operations. They could overload
isfusing
andbroadcast(::typeof(foo), ...)
for a small number of supportedfoo
.Makes life easier in specialized applications where it may not be possible to define
broadcast
for general functions, e.g. in Convex.jl where it needs to guarantee convexity.Con:
You can no longer look at an expression like
x .+ y .* x
and know that it fuses into a single loop with no temporaries.There is no middle ground. A single non-fusable operand will "spoil" fusion for an entire set of nested dot calls. (To fuse a subset of an expression, you'd have to explicitly assign it to a temporary array.) (We could lower to a nested set of
isfusing
calls, of course, but then you'd get an exponential explosion in lowered code size.)In the long run, I really think that packages like TensorFlow.jl should exploit the underlying library's ability to define custom operations as callback functions to implement
broadcast(f::Function, ...)
for arbitraryf
, at which point they can definingisfusing(...) = true
and get all the benefits of fusion.The text was updated successfully, but these errors were encountered: