- Sponsor
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
APL indexing #15431
APL indexing #15431
Changes from 1 commit
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
- Loading branch information
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -224,31 +224,27 @@ end | |
# Recursively compute the lengths of a list of indices, without dropping scalars | ||
# These need to be inlined for more than 3 indexes | ||
index_lengths(A::AbstractArray, I::Colon) = (length(A),) | ||
index_lengths(A::AbstractArray, I::AbstractArray{Bool}) = (sum(I),) | ||
index_lengths(A::AbstractArray, I::AbstractArray) = (length(I),) | ||
@inline index_lengths(A::AbstractArray, I...) = index_lengths_dim(A, 1, I...) | ||
index_lengths_dim(A, dim) = () | ||
index_lengths_dim(A, dim, ::Colon) = (trailingsize(A, dim),) | ||
@inline index_lengths_dim(A, dim, ::Colon, i, I...) = (size(A, dim), index_lengths_dim(A, dim+1, i, I...)...) | ||
@inline index_lengths_dim(A, dim, ::Real, I...) = (1, index_lengths_dim(A, dim+1, I...)...) | ||
@inline index_lengths_dim{N}(A, dim, ::CartesianIndex{N}, I...) = (1, index_shape_dim(A, dim+N, I...)...) | ||
@inline index_lengths_dim(A, dim, i::AbstractArray{Bool}, I...) = (sum(i), index_lengths_dim(A, dim+1, I...)...) | ||
@inline index_lengths_dim(A, dim, i::AbstractArray, I...) = (length(i), index_lengths_dim(A, dim+1, I...)...) | ||
@inline index_lengths_dim(A, dim, i::AbstractArray{Bool}, I...) = (sum(i), index_lengths_dim(A, dim+1, I...)...) | ||
@inline index_lengths_dim{N}(A, dim, i::AbstractArray{CartesianIndex{N}}, I...) = (length(i), index_lengths_dim(A, dim+N, I...)...) | ||
|
||
# shape of array to create for getindex() with indexes I, dropping scalars | ||
index_shape(A::AbstractArray, I::AbstractArray) = size(I) # Linear index reshape | ||
index_shape(A::AbstractArray, I::AbstractArray{Bool}) = (sum(I),) # Logical index | ||
index_shape(A::AbstractArray, I::Colon) = (length(A),) | ||
@inline index_shape(A::AbstractArray, I...) = index_shape_dim(A, 1, I...) | ||
index_shape_dim(A, dim, I::Real...) = () | ||
index_shape_dim(A, dim, ::Colon) = (trailingsize(A, dim),) | ||
@inline index_shape_dim(A, dim, ::Colon, i, I...) = (size(A, dim), index_shape_dim(A, dim+1, i, I...)...) | ||
@inline index_shape_dim(A, dim, ::Real, I...) = (index_shape_dim(A, dim+1, I...)...) | ||
@inline index_shape_dim{N}(A, dim, ::CartesianIndex{N}, I...) = (index_shape_dim(A, dim+N, I...)...) | ||
@inline index_shape_dim(A, dim, i::AbstractVector{Bool}, I...) = (sum(i), index_shape_dim(A, dim+1, I...)...) | ||
@inline index_shape_dim(A, dim, i::AbstractVector, I...) = (length(i), index_shape_dim(A, dim+1, I...)...) | ||
@inline index_shape_dim{N}(A, dim, i::AbstractVector{CartesianIndex{N}}, I...) = (length(i), index_shape_dim(A, dim+N, I...)...) | ||
@inline index_shape_dim(A, dim, i::AbstractArray, I...) = (size(i)..., index_shape_dim(A, dim+1, I...)...) | ||
@inline index_shape_dim(A, dim, i::AbstractArray{Bool}, I...) = (sum(i), index_shape_dim(A, dim+1, I...)...) | ||
@inline index_shape_dim{N}(A, dim, i::AbstractArray{CartesianIndex{N}}, I...) = (size(i)..., index_shape_dim(A, dim+N, I...)...) | ||
|
||
### From abstractarray.jl: Internal multidimensional indexing definitions ### | ||
# These are not defined on directly on getindex to avoid | ||
|
@@ -264,8 +260,9 @@ end | |
quote | ||
# This is specifically *not* inlined. | ||
@nexprs $N d->(I_d = to_index(I[d])) | ||
dest = similar(A, @ncall $N index_shape A I) | ||
@ncall $N checksize dest I | ||
shape = @ncall $N index_shape A I | ||
dest = similar(A, shape) | ||
size(dest) == shape || throw_checksize_error(dest, shape) | ||
@ncall $N _unsafe_getindex! dest A I | ||
end | ||
end | ||
|
@@ -274,10 +271,10 @@ end | |
# This is inherently a linear operation in the source, but we could potentially | ||
# use fast dividing integers to speed it up. | ||
function _unsafe_getindex(::LinearIndexing, src::AbstractArray, I::AbstractArray{Bool}) | ||
# Both index_shape and checksize compute sum(I); manually hoist it out | ||
N = sum(I) | ||
dest = similar(src, (N,)) | ||
size(dest) == (N,) || throw(DimensionMismatch()) | ||
shape = index_shape(src, I) | ||
dest = similar(src, shape) | ||
size(dest) == shape || throw_checksize_error(dest, shape) | ||
|
||
D = eachindex(dest) | ||
Ds = start(D) | ||
for (i, s) in zip(eachindex(I), eachindex(src)) | ||
|
@@ -290,20 +287,8 @@ function _unsafe_getindex(::LinearIndexing, src::AbstractArray, I::AbstractArray | |
dest | ||
end | ||
|
||
# Indexing with an array of indices is inherently linear in the source, but | ||
# might be able to be optimized with fast dividing integers | ||
@inline function _unsafe_getindex!(dest::AbstractArray, src::AbstractArray, I::AbstractArray) | ||
D = eachindex(dest) | ||
Ds = start(D) | ||
for idx in I | ||
d, Ds = next(D, Ds) | ||
@inbounds dest[d] = src[idx] | ||
end | ||
dest | ||
end | ||
|
||
# Always index with exactly the indices provided. | ||
@generated function _unsafe_getindex!(dest::AbstractArray, src::AbstractArray, I::Union{Real, AbstractVector, Colon}...) | ||
# Always index with the exactly indices provided. | ||
@generated function _unsafe_getindex!(dest::AbstractArray, src::AbstractArray, I::Union{Real, AbstractArray, Colon}...) | ||
N = length(I) | ||
quote | ||
$(Expr(:meta, :inline)) | ||
|
@@ -318,26 +303,7 @@ end | |
end | ||
end | ||
|
||
# checksize ensures the output array A is the correct size for the given indices | ||
@noinline throw_checksize_error(A, dim, idx) = throw(DimensionMismatch("index $dim selects $(length(idx)) elements, but size(A, $dim) = $(size(A,dim))")) | ||
@noinline throw_checksize_error(A, dim, idx::AbstractArray{Bool}) = throw(DimensionMismatch("index $dim selects $(sum(idx)) elements, but size(A, $dim) = $(size(A,dim))")) | ||
|
||
checksize(A::AbstractArray, I::AbstractArray) = size(A) == size(I) || throw_checksize_error(A, 1, I) | ||
checksize(A::AbstractArray, I::AbstractArray{Bool}) = length(A) == sum(I) || throw_checksize_error(A, 1, I) | ||
|
||
@inline checksize(A::AbstractArray, I...) = _checksize(A, 1, I...) | ||
_checksize(A::AbstractArray, dim) = true | ||
# Drop dimensions indexed by scalars, ignore colons | ||
@inline _checksize(A::AbstractArray, dim, ::Real, J...) = _checksize(A, dim, J...) | ||
@inline _checksize(A::AbstractArray, dim, ::Colon, J...) = _checksize(A, dim+1, J...) | ||
@inline function _checksize(A::AbstractArray, dim, I, J...) | ||
size(A, dim) == length(I) || throw_checksize_error(A, dim, I) | ||
_checksize(A, dim+1, J...) | ||
end | ||
@inline function _checksize(A::AbstractArray, dim, I::AbstractVector{Bool}, J...) | ||
size(A, dim) == sum(I) || throw_checksize_error(A, dim, I) | ||
_checksize(A, dim+1, J...) | ||
end | ||
@noinline throw_checksize_error(A, sz) = throw(DimensionMismatch("output array is the wrong size; expected $sz, got $(size(A))")) | ||
|
||
## setindex! ## | ||
# For multi-element setindex!, we check bounds, convert the indices (to_index), | ||
|
@@ -520,11 +486,41 @@ inlinemap(f, t::Tuple{}, s::Tuple) = () | |
inlinemap(f, t::Tuple, s::Tuple{}) = () | ||
|
||
# Otherwise, we fall back to the slow div/rem method, using ind2sub. | ||
@inline merge_indexes{N}(V, indexes::NTuple{N}, index) = merge_indexes_div(V, indexes, index, index_lengths_dim(V.parent, length(V.indexes)-N+1, indexes...)) | ||
|
||
@inline merge_indexes_div{N}(V, indexes::NTuple{N}, index::Real, dimlengths) = CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, index))) | ||
merge_indexes_div{N}(V, indexes::NTuple{N}, index, dimlengths) = [CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, i))) for i in index] | ||
merge_indexes_div{N}(V, indexes::NTuple{N}, index::Colon, dimlengths) = [CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, i))) for i in 1:prod(dimlengths)] | ||
@inline merge_indexes{N}(V, indexes::NTuple{N}, index) = | ||
merge_indexes_div(V, indexes, index, index_lengths_dim(V.parent, length(V.indexes)-N+1, indexes...)) | ||
|
||
@inline merge_indexes_div{N}(V, indexes::NTuple{N}, index::Real, dimlengths) = | ||
CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, index))) | ||
merge_indexes_div{N}(V, indexes::NTuple{N}, index::AbstractArray, dimlengths) = | ||
reshape([CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, i))) for i in index], size(index)) | ||
merge_indexes_div{N}(V, indexes::NTuple{N}, index::Colon, dimlengths) = | ||
[CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, i))) for i in 1:prod(dimlengths)] | ||
|
||
# Merging indices is particularly difficult in the case where we partially linearly | ||
# index through a multidimensional array. It's easiest if we can simply reduce the | ||
# partial indices to a single linear index into the parent index array. | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I haven't tried this yet, but I wonder if we can now eliminate the trauma by reshaping the parent first? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Here's what I threw together this morning: 10076f7 — this reshapes a lazy array of the cartesian indices. I think it'll be a little more efficient since it's only the final index that gets the reshaped treatment. I can put that commit here, too, but I figured it deserved a bit more benchmarking that I didn't have time to do. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. That's fine, let's tackle that issue separately. |
||
function merge_indexes{N}(V, indexes::NTuple{N}, index::Tuple{Colon, Vararg{Colon}}) | ||
shape = index_shape(indexes[1], index...) | ||
reshape(merge_indexes(V, indexes, :), (shape[1:end-1]..., shape[end]*prod(index_lengths_dim(V.parent, length(V.indexes)-length(indexes)+2, tail(indexes)...)))) | ||
end | ||
@inline merge_indexes{N}(V, indexes::NTuple{N}, index::Tuple{Real, Vararg{Real}}) = merge_indexes(V, indexes, sub2ind(size(indexes[1]), index...)) | ||
# In general, it's a little trickier, but we can use the product iterator | ||
# if we replace colons with ranges. This can be optimized further. | ||
function merge_indexes{N}(V, indexes::NTuple{N}, index::Tuple) | ||
I = replace_colons(V, indexes, index) | ||
shp = index_shape(indexes[1], I...) # index_shape does no bounds checking | ||
dimlengths = index_lengths_dim(V.parent, length(V.indexes)-N+1, indexes...) | ||
sz = size(indexes[1]) | ||
reshape([CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, sub2ind(sz, i...)))) for i in product(I...)], shp) | ||
end | ||
@inline replace_colons(V, indexes, I) = replace_colons_dim(V, indexes, 1, I) | ||
@inline replace_colons_dim(V, indexes, dim, I::Tuple{}) = () | ||
@inline replace_colons_dim(V, indexes, dim, I::Tuple{Colon}) = | ||
(1:trailingsize(indexes[1], dim)*prod(index_lengths_dim(V.parent, length(V.indexes)-length(indexes)+2, tail(indexes)...)),) | ||
@inline replace_colons_dim(V, indexes, dim, I::Tuple{Colon, Vararg{Any}}) = | ||
(1:size(indexes[1], dim), replace_colons_dim(V, indexes, dim+1, tail(I))...) | ||
@inline replace_colons_dim(V, indexes, dim, I::Tuple{Any, Vararg{Any}}) = | ||
(I[1], replace_colons_dim(V, indexes, dim+1, tail(I))...) | ||
|
||
|
||
cumsum(A::AbstractArray, axis::Integer=1) = cumsum!(similar(A, Base._cumsum_type(A)), A, axis) | ||
|
@@ -637,7 +633,7 @@ end | |
# in the general multidimensional non-scalar case, can we do about 10% better | ||
# in most cases by manually hoisting the bitarray chunks access out of the loop | ||
# (This should really be handled by the compiler or with an immutable BitArray) | ||
@generated function _unsafe_getindex!(X::BitArray, B::BitArray, I::Union{Int,AbstractVector{Int},Colon}...) | ||
@generated function _unsafe_getindex!(X::BitArray, B::BitArray, I::Union{Int,AbstractArray{Int},Colon}...) | ||
N = length(I) | ||
quote | ||
$(Expr(:meta, :inline)) | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
If I'm reading this right, does this mean all
AbstractArray{Bool}
act like they are vectors, for the purpose of determining output dimensionality?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
That's correct. They can't really do anything else.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
One potentially crazy interpretation would be that they should remove dimensions from the parent:
That's a separate "feature" though, I think.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I agree that's pretty much the only thing they can do. I'd simply suggest that we document this, it's slightly at odds with the "sum of the dimensions of the indexes".
One additional option is to support
AbstractArray{Bool,N}
if it's the only index, and otherwise require each dimension to be anAbstractVector{Bool}
.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yeah, that's probably a reasonable restriction. As it stands, I have a hard time imagining a real use-case for indexing with a multidimensional logical array that's somewhere between 1- and N- indices unless we allow it to span multiple dimensions. One of the nice things about this APL indexing patch, though, is how it generalizes the first-index behavior and removes special cases like that.
On the other hand, I must say that I really value how restrictive Julia currently is with regards to logical indexing. I frequently hit Matlab bugs where vectorized comparisons of struct arrays (
mask = [s.a] == x
) will silently drop empty elements, and then it'll silently allow me to index a larger vector with it (e.g.,[s(mask).b]
). So artificial restrictions here can be very good.