-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Added accumulate, accumulate! #18931
Changes from 4 commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -60,6 +60,8 @@ Library improvements | |
you can now do e.g. `[A I]` and it will concatenate an appropriately sized | ||
identity matrix ([#19305]). | ||
|
||
* New `accumulate` and `accumulate!` functions, which generalize `cumsum` and `cumprod`. Also known as [scan](https://en.wikipedia.org/wiki/Prefix_sum) ([#18931]). | ||
|
||
Compiler/Runtime improvements | ||
----------------------------- | ||
|
||
|
@@ -76,6 +78,7 @@ Deprecated or removed | |
|
||
* `Dates.recur` has been deprecated in favor of `filter` ([#19288]) | ||
|
||
* `cummin` and `cummax` have been deprecated in favor of `accumulate`. | ||
Julia v0.5.0 Release Notes | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. missing a blank line |
||
========================== | ||
|
||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -145,6 +145,10 @@ end | |
@deprecate chol(A::Number, ::Type{Val{:L}}) ctranspose(chol(A)) | ||
@deprecate chol(A::AbstractMatrix, ::Type{Val{:L}}) ctranspose(chol(A)) | ||
|
||
@deprecate cummin(A, dim=1) accumulate(min, A, dim=1) | ||
@deprecate cummax(A, dim=1) accumulate(max, A, dim=1) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. these need to be at the end of the file where 0.6 deprecations go, not in the middle of the 0.5 deprecations edit: got it in #19415 |
||
|
||
|
||
# Number updates | ||
|
||
# rem1 is inconsistent for x==0: The result should both have the same | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -481,49 +481,62 @@ end | |
end | ||
end | ||
|
||
for (f, fmod, op) = ((:cummin, :_cummin!, :min), (:cummax, :_cummax!, :max)) | ||
@eval function ($f)(v::AbstractVector) | ||
n = length(v) | ||
cur_val = v[1] | ||
res = similar(v, n) | ||
res[1] = cur_val | ||
for i in 2:n | ||
cur_val = ($op)(v[i], cur_val) | ||
res[i] = cur_val | ||
end | ||
return res | ||
end | ||
|
||
@eval function ($f)(A::AbstractArray, axis::Integer) | ||
axis > 0 || throw(ArgumentError("axis must be a positive integer")) | ||
res = similar(A) | ||
axis > ndims(A) && return copy!(res, A) | ||
inds = indices(A) | ||
if isempty(inds[axis]) | ||
return res | ||
# see discussion in #18364 ... we try not to widen type of the resulting array | ||
# from cumsum or cumprod, but in some cases (+, Bool) we may not have a choice. | ||
rcum_promote_type{T,S<:Number}(op, ::Type{T}, ::Type{S}) = promote_op(op, T, S) | ||
rcum_promote_type{T<:Number}(op, ::Type{T}) = rcum_promote_type(op, T,T) | ||
rcum_promote_type{T}(op, ::Type{T}) = T | ||
|
||
# handle sums of Vector{Bool} and similar. it would be nice to handle | ||
# any AbstractArray here, but it's not clear how that would be possible | ||
rcum_promote_type{T,N}(op, ::Type{Array{T,N}}) = Array{rcum_promote_type(op,T), N} | ||
|
||
# accumulate_pairwise slightly slower then accumulate, but more numerically | ||
# stable in certain situtations (e.g. sums). | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. typo here "situtations" has one too many t's |
||
# it does double the number of operations compared to accumulate, | ||
# though for cheap operations like + this does not have much impact (20%) | ||
function _accumulate_pairwise!{T, Op}(op::Op, c::AbstractVector{T}, v::AbstractVector, s, i1, n)::T | ||
@inbounds if n < 128 | ||
s_ = v[i1] | ||
c[i1] = op(s, s_) | ||
for i = i1+1:i1+n-1 | ||
s_ = op(s_, v[i]) | ||
c[i] = op(s, s_) | ||
end | ||
R1 = CartesianRange(inds[1:axis-1]) | ||
R2 = CartesianRange(inds[axis+1:end]) | ||
($fmod)(res, A, R1, R2, axis) | ||
else | ||
n2 = n >> 1 | ||
s_ = _accumulate_pairwise!(op, c, v, s, i1, n2) | ||
s_ = op(s_, _accumulate_pairwise!(op, c, v, op(s, s_), i1+n2, n-n2)) | ||
end | ||
return s_ | ||
end | ||
|
||
@eval @noinline function ($fmod)(res, A::AbstractArray, R1::CartesianRange, R2::CartesianRange, axis::Integer) | ||
inds = indices(A, axis) | ||
i1 = first(inds) | ||
for I2 in R2 | ||
for I1 in R1 | ||
res[I1, i1, I2] = A[I1, i1, I2] | ||
end | ||
for i = i1+1:last(inds) | ||
for I1 in R1 | ||
res[I1, i, I2] = ($op)(A[I1, i, I2], res[I1, i-1, I2]) | ||
end | ||
end | ||
end | ||
res | ||
end | ||
function accumulate_pairwise!{Op}(op::Op, result::AbstractVector, v::AbstractVector) | ||
li = linearindices(v) | ||
li != linearindices(result) && throw(DimensionMismatch("input and output array sizes and indices must match")) | ||
n = length(li) | ||
n == 0 && return result | ||
i1 = first(li) | ||
@inbounds result[i1] = v1 = v[i1] | ||
n == 1 && return result | ||
_accumulate_pairwise!(op, result, v, v1, i1+1, n-1) | ||
return result | ||
end | ||
|
||
function accumulate_pairwise{T}(op, v::AbstractVector{T}) | ||
out = similar(v, rcum_promote_type(op, T)) | ||
return accumulate_pairwise!(op, out, v) | ||
end | ||
|
||
@eval ($f)(A::AbstractArray) = ($f)(A, 1) | ||
function cumsum!(out, v::AbstractVector, axis::Integer=1) | ||
# for types prone to numerical stability issues, we want | ||
# accumulate_pairwise. | ||
axis == 1 ? accumulate_pairwise!(+, out, v) : copy!(out,v) | ||
end | ||
|
||
function cumsum!{T <: Integer}(out, v::AbstractVector{T}, axis::Integer=1) | ||
axis == 1 ? accumulate!(+, out, v) : copy!(out,v) | ||
end | ||
|
||
""" | ||
|
@@ -550,8 +563,12 @@ julia> cumsum(a,2) | |
4 9 15 | ||
``` | ||
""" | ||
cumsum{T}(A::AbstractArray{T}, axis::Integer=1) = cumsum!(similar(A, rcum_promote_type(+, T)), A, axis) | ||
cumsum!(B, A::AbstractArray) = cumsum!(B, A, 1) | ||
function cumsum{T}(A::AbstractArray{T}, axis::Integer=1) | ||
out = similar(A, rcum_promote_type(+, T)) | ||
cumsum!(out, A, axis) | ||
end | ||
cumsum!(B, A, axis::Integer=1) = accumulate!(+, B, A, axis) | ||
|
||
""" | ||
cumprod(A, dim=1) | ||
|
||
|
@@ -576,13 +593,99 @@ julia> cumprod(a,2) | |
4 20 120 | ||
``` | ||
""" | ||
cumprod(A::AbstractArray, axis::Integer=1) = cumprod!(similar(A), A, axis) | ||
cumprod!(B, A) = cumprod!(B, A, 1) | ||
cumprod(A::AbstractArray, axis::Integer=1) = accumulate(*, A, axis) | ||
cumprod!(B, A, axis::Integer=1) = accumulate!(*, B, A, axis) | ||
|
||
""" | ||
accumulate(op, A, dim=1) | ||
|
||
cumsum!(B, A, axis::Integer) = cumop!(+, B, A, axis) | ||
cumprod!(B, A, axis::Integer) = cumop!(*, B, A, axis) | ||
Cumulative operation `op` along a dimension `dim` (defaults to 1). See also | ||
[`accumulate!`](:func:`accumulate!`) to use a preallocated output array, both for performance and | ||
to control the precision of the output (e.g. to avoid overflow). For common operations | ||
there are specialized variants of `accumulate`, see: | ||
[`cumsum`](:func:`cumsum`), [`cumprod`](:func:`cumprod`) | ||
|
||
```jldoctest | ||
julia> accumulate(+, [1,2,3]) | ||
3-element Array{Int64,1}: | ||
1 | ||
3 | ||
6 | ||
|
||
julia> accumulate(*, [1,2,3]) | ||
3-element Array{Int64,1}: | ||
1 | ||
2 | ||
6 | ||
``` | ||
""" | ||
function accumulate(op, A, axis::Integer=1) | ||
out = similar(A, rcum_promote_type(op, eltype(A))) | ||
accumulate!(op, out, A, axis) | ||
end | ||
|
||
function cumop!(op, B, A, axis::Integer) | ||
|
||
""" | ||
accumulate(op, v0, A) | ||
|
||
Like `accumulate`, but using a starting element `v0`. The first entry of the result will be | ||
`op(v0, first(A))`. For example: | ||
|
||
```jldoctest | ||
julia> accumulate(+, 100, [1,2,3]) | ||
3-element Array{Int64,1}: | ||
101 | ||
103 | ||
106 | ||
|
||
julia> accumulate(min, 0, [1,2,-1]) | ||
3-element Array{Int64,1}: | ||
0 | ||
0 | ||
-1 | ||
``` | ||
""" | ||
function accumulate(op, v0, A, axis::Integer=1) | ||
T = rcum_promote_type(op, typeof(v0), eltype(A)) | ||
out = similar(A, T) | ||
accumulate!(op, out, v0, A, 1) | ||
end | ||
|
||
function accumulate!{Op}(op::Op, B, A::AbstractVector, axis::Integer=1) | ||
isempty(A) && return B | ||
v1 = first(A) | ||
_accumulate1!(op, B, v1, A, axis) | ||
end | ||
|
||
function accumulate!(op, B, v0, A::AbstractVector, axis::Integer=1) | ||
isempty(A) && return B | ||
v1 = op(v0, first(A)) | ||
_accumulate1!(op, B, v1, A, axis) | ||
end | ||
|
||
|
||
function _accumulate1!(op, B, v1, A::AbstractVector, axis::Integer=1) | ||
axis > 0 || throw(ArgumentError("axis must be a positive integer")) | ||
inds = linearindices(A) | ||
inds == linearindices(B) || throw(DimensionMismatch("linearindices of A and B don't match")) | ||
axis > 1 && return copy!(B, A) | ||
i1 = inds[1] | ||
cur_val = v1 | ||
B[i1] = cur_val | ||
@inbounds for i in inds[2:end] | ||
cur_val = op(cur_val, A[i]) | ||
B[i] = cur_val | ||
end | ||
return B | ||
end | ||
|
||
""" | ||
accumulate!(op, B, A, dim=1) | ||
|
||
Cumulative operation `op` on `A` along a dimension, storing the result in `B`. The dimension defaults to 1. | ||
See also [`accumulate`](:func:`accumulate`). | ||
""" | ||
function accumulate!(op, B, A, axis::Integer=1) | ||
axis > 0 || throw(ArgumentError("axis must be a positive integer")) | ||
inds_t = indices(A) | ||
indices(B) == inds_t || throw(DimensionMismatch("shape of B must match A")) | ||
|
@@ -603,12 +706,12 @@ function cumop!(op, B, A, axis::Integer) | |
else | ||
R1 = CartesianRange(indices(A)[1:axis-1]) # not type-stable | ||
R2 = CartesianRange(indices(A)[axis+1:end]) | ||
_cumop!(op, B, A, R1, inds_t[axis], R2) # use function barrier | ||
_accumulate!(op, B, A, R1, inds_t[axis], R2) # use function barrier | ||
end | ||
return B | ||
end | ||
|
||
@noinline function _cumop!(op, B, A, R1, ind, R2) | ||
@noinline function _accumulate!(op, B, A, R1, ind, R2) | ||
# Copy the initial element in each 1d vector along dimension `axis` | ||
i = first(ind) | ||
@inbounds for J in R2, I in R1 | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
, also known as a scan operation