Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RFC: Deprecate Array(T, dims...) #19989

Merged
merged 2 commits into from
Jan 14, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions base/array.jl
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,15 @@ typealias DenseVecOrMat{T} Union{DenseVector{T}, DenseMatrix{T}}

import Core: arraysize, arrayset, arrayref

"""
Array{T,N}(dims)

Construct an uninitialized `N`-dimensional dense array with element type `T`. `dims` may
be a tuple or a series of integer arguments corresponding to the length in each dimension.
If the rank `N` is omitted, i.e. `Array{T}(dims)`, the rank is determined based on `dims`.
"""
Array

vect() = Array{Any,1}(0)
vect{T}(X::T...) = T[ X[i] for i=1:length(X) ]

Expand Down
2 changes: 1 addition & 1 deletion base/asyncmap.jl
Original file line number Diff line number Diff line change
Expand Up @@ -246,7 +246,7 @@ end

# Special handling for some types.
function asyncmap(f, s::AbstractString; kwargs...)
s2=Array(Char, length(s))
s2 = Array{Char,1}(length(s))
asyncmap!(f, s2, s; kwargs...)
return convert(String, s2)
end
Expand Down
7 changes: 0 additions & 7 deletions base/boot.jl
Original file line number Diff line number Diff line change
Expand Up @@ -330,13 +330,6 @@ typealias NTuple{N,T} Tuple{Vararg{T,N}}
(::Type{Array{T,1}}){T}() = Array{T,1}(0)
(::Type{Array{T,2}}){T}() = Array{T,2}(0, 0)

# TODO: possibly turn these into deprecations
Array{T,N}(::Type{T}, d::NTuple{N,Int}) = Array{T,N}(d)
Array{T}(::Type{T}, d::Int...) = Array(T, d)
Array{T}(::Type{T}, m::Int) = Array{T,1}(m)
Array{T}(::Type{T}, m::Int,n::Int) = Array{T,2}(m,n)
Array{T}(::Type{T}, m::Int,n::Int,o::Int) = Array{T,3}(m,n,o)

# primitive Symbol constructors
function Symbol(s::String)
return ccall(:jl_symbol_n, Ref{Symbol}, (Ptr{UInt8}, Int),
Expand Down
19 changes: 19 additions & 0 deletions base/deprecated.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1741,4 +1741,23 @@ end
export @test_approx_eq
# END code from base/test.jl

# Deprecate Array(T, dims...) in favor of proper type constructors
@deprecate Array{T,N}(::Type{T}, d::NTuple{N,Int}) Array{T,N}(d)
@deprecate Array{T}(::Type{T}, d::Int...) Array{T,length(d)}(d...)
@deprecate Array{T}(::Type{T}, m::Int) Array{T,1}(m)
@deprecate Array{T}(::Type{T}, m::Int,n::Int) Array{T,2}(m,n)
@deprecate Array{T}(::Type{T}, m::Int,n::Int,o::Int) Array{T,3}(m,n,o)
@deprecate Array{T}(::Type{T}, d::Integer...) Array{T,length(d)}(convert(Tuple{Vararg{Int}}, d))
@deprecate Array{T}(::Type{T}, m::Integer) Array{T,1}(Int(m))
@deprecate Array{T}(::Type{T}, m::Integer,n::Integer) Array{T,2}(Int(m),Int(n))
@deprecate Array{T}(::Type{T}, m::Integer,n::Integer,o::Integer) Array{T,3}(Int(m),Int(n),Int(o))

# Likewise for SharedArrays
@deprecate SharedArray{T,N}(::Type{T}, dims::Dims{N}; kwargs...) SharedArray{T,N}(dims; kwargs...)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Similar to comment below, these are calling non-existing methods.

@deprecate SharedArray{T}(::Type{T}, dims::Int...; kwargs...) SharedArray{T,length(dims)}(dims...; kwargs...)
@deprecate(SharedArray{T,N}(filename::AbstractString, ::Type{T}, dims::NTuple{N,Int}, offset; kwargs...),
SharedArray{T,N}(filename, dims, offset; kwargs...))
@deprecate(SharedArray{T}(filename::AbstractString, ::Type{T}, dims::NTuple, offset; kwargs...),
SharedArray{T,length(dims)}(filename, dims, offset; kwargs...))

# End deprecations scheduled for 0.6
9 changes: 0 additions & 9 deletions base/docs/helpdb/Base.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1676,15 +1676,6 @@ by `show` generally includes Julia-specific formatting and type information.
"""
show(x)

"""
Array(dims)

`Array{T}(dims)` constructs an uninitialized dense array with element type `T`. `dims` may
be a tuple or a series of integer arguments. The syntax `Array(T, dims)` is also available,
but deprecated.
"""
Array

"""
issubtype(type1, type2)

Expand Down
2 changes: 1 addition & 1 deletion base/libc.jl
Original file line number Diff line number Diff line change
Expand Up @@ -277,7 +277,7 @@ if is_windows()
const FORMAT_MESSAGE_FROM_SYSTEM = UInt32(0x1000)
const FORMAT_MESSAGE_IGNORE_INSERTS = UInt32(0x200)
const FORMAT_MESSAGE_MAX_WIDTH_MASK = UInt32(0xFF)
lpMsgBuf = Array(Ptr{UInt16})
lpMsgBuf = Array{Ptr{UInt16},0}()
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Not necessary to change in this PR since this is the exact equivalent of what was there, but shouldn't this be updated to use a Ref{Ptr{UInt16}} instead of a zero-dimensional array?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

+1 to Ref

lpMsgBuf[1] = 0
len = ccall(:FormatMessageW,stdcall,UInt32,(Cint, Ptr{Void}, Cint, Cint, Ptr{Ptr{UInt16}}, Cint, Ptr{Void}),
FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_MAX_WIDTH_MASK,
Expand Down
112 changes: 59 additions & 53 deletions base/sharedarray.jl
Original file line number Diff line number Diff line change
Expand Up @@ -28,19 +28,8 @@ type SharedArray{T,N} <: DenseArray{T,N}
end
end

(::Type{SharedArray{T}}){T,N}(d::NTuple{N,Int}; kwargs...) =
SharedArray(T, d; kwargs...)
(::Type{SharedArray{T}}){T}(d::Integer...; kwargs...) =
SharedArray(T, d; kwargs...)
(::Type{SharedArray{T}}){T}(m::Integer; kwargs...) =
SharedArray(T, m; kwargs...)
(::Type{SharedArray{T}}){T}(m::Integer, n::Integer; kwargs...) =
SharedArray(T, m, n; kwargs...)
(::Type{SharedArray{T}}){T}(m::Integer, n::Integer, o::Integer; kwargs...) =
SharedArray(T, m, n, o; kwargs...)

"""
SharedArray(T::Type, dims::NTuple; init=false, pids=Int[])
SharedArray{T,N}(dims::NTuple; init=false, pids=Int[])

Construct a `SharedArray` of a bitstype `T` and size `dims` across the processes specified
by `pids` - all of which have to be on the same host.
Expand All @@ -52,8 +41,39 @@ computation with the master process acting as a driver.

If an `init` function of the type `initfn(S::SharedArray)` is specified, it is called on all
the participating workers.

SharedArray{T,N}(filename::AbstractString, dims::NTuple, [offset=0]; mode=nothing, init=false, pids=Int[])

Construct a `SharedArray` backed by the file `filename`, with element
type `T` (must be a `bitstype`) and size `dims`, across the processes
specified by `pids` - all of which have to be on the same host. This
file is mmapped into the host memory, with the following consequences:

- The array data must be represented in binary format (e.g., an ASCII
format like CSV cannot be supported)

- Any changes you make to the array values (e.g., `A[3] = 0`) will
also change the values on disk

If `pids` is left unspecified, the shared array will be mapped across
all processes on the current host, including the master. But,
`localindexes` and `indexpids` will only refer to worker
processes. This facilitates work distribution code to use workers for
actual computation with the master process acting as a driver.

`mode` must be one of `"r"`, `"r+"`, `"w+"`, or `"a+"`, and defaults
to `"r+"` if the file specified by `filename` already exists, or
`"w+"` if not. If an `init` function of the type
`initfn(S::SharedArray)` is specified, it is called on all the
participating workers. You cannot specify an `init` function if the
file is not writable.

`offset` allows you to skip the specified number of bytes at the
beginning of the file.
"""
function SharedArray{T,N}(::Type{T}, dims::Dims{N}; init=false, pids=Int[])
SharedArray

function (::Type{SharedArray{T,N}}){T,N}(dims::Dims{N}; init=false, pids=Int[])
isbits(T) || throw(ArgumentError("type of SharedArray elements must be bits types, got $(T)"))

pids, onlocalhost = shared_pids(pids)
Expand Down Expand Up @@ -110,39 +130,20 @@ function SharedArray{T,N}(::Type{T}, dims::Dims{N}; init=false, pids=Int[])
S
end

SharedArray(T, I::Int...; kwargs...) = SharedArray(T, I; kwargs...)

"""
SharedArray(filename::AbstractString, T::Type, dims::NTuple, [offset=0]; mode=nothing, init=false, pids=Int[])

Construct a `SharedArray` backed by the file `filename`, with element
type `T` (must be a `bitstype`) and size `dims`, across the processes
specified by `pids` - all of which have to be on the same host. This
file is mmapped into the host memory, with the following consequences:

- The array data must be represented in binary format (e.g., an ASCII
format like CSV cannot be supported)

- Any changes you make to the array values (e.g., `A[3] = 0`) will
also change the values on disk

If `pids` is left unspecified, the shared array will be mapped across
all processes on the current host, including the master. But,
`localindexes` and `indexpids` will only refer to worker
processes. This facilitates work distribution code to use workers for
actual computation with the master process acting as a driver.

`mode` must be one of `"r"`, `"r+"`, `"w+"`, or `"a+"`, and defaults
to `"r+"` if the file specified by `filename` already exists, or
`"w+"` if not. If an `init` function of the type
`initfn(S::SharedArray)` is specified, it is called on all the
participating workers. You cannot specify an `init` function if the
file is not writable.
(::Type{SharedArray{T,N}}){T,N}(I::Integer...; kwargs...) =
SharedArray{T,N}(I; kwargs...)
(::Type{SharedArray{T}}){T}(d::NTuple; kwargs...) =
SharedArray{T,length(d)}(d; kwargs...)
(::Type{SharedArray{T}}){T}(I::Integer...; kwargs...) =
SharedArray{T,length(I)}(I; kwargs...)
(::Type{SharedArray{T}}){T}(m::Integer; kwargs...) =
SharedArray{T,1}(m; kwargs...)
(::Type{SharedArray{T}}){T}(m::Integer, n::Integer; kwargs...) =
SharedArray{T,2}(m, n; kwargs...)
(::Type{SharedArray{T}}){T}(m::Integer, n::Integer, o::Integer; kwargs...) =
SharedArray{T,3}(m, n, o; kwargs...)

`offset` allows you to skip the specified number of bytes at the
beginning of the file.
"""
function SharedArray{T,N}(filename::AbstractString, ::Type{T}, dims::NTuple{N,Int},
function (::Type{SharedArray{T,N}}){T,N}(filename::AbstractString, dims::NTuple{N,Int},
offset::Integer=0; mode=nothing, init=false, pids::Vector{Int}=Int[])
if !isabspath(filename)
throw(ArgumentError("$filename is not an absolute path; try abspath(filename)?"))
Expand Down Expand Up @@ -208,6 +209,10 @@ function SharedArray{T,N}(filename::AbstractString, ::Type{T}, dims::NTuple{N,In
S
end

(::Type{SharedArray{T}}){T,N}(filename::AbstractString, dims::NTuple{N,Int}, offset::Integer=0;
mode=nothing, init=false, pids::Vector{Int}=Int[]) =
SharedArray{T,N}(filename, dims, offset; mode=mode, init=init, pids=pids)

function initialize_shared_array(S, onlocalhost, init, pids)
if onlocalhost
init_loc_flds(S)
Expand Down Expand Up @@ -246,6 +251,7 @@ typealias SharedMatrix{T} SharedArray{T,2}

length(S::SharedArray) = prod(S.dims)
size(S::SharedArray) = S.dims
ndims(S::SharedArray) = length(S.dims)
linearindexing{S<:SharedArray}(::Type{S}) = LinearFast()

function reshape{T,N}(a::SharedArray{T}, dims::NTuple{N,Int})
Expand Down Expand Up @@ -307,21 +313,21 @@ localindexes(S::SharedArray) = S.pidx > 0 ? range_1dim(S, S.pidx) : 1:0
unsafe_convert{T}(::Type{Ptr{T}}, S::SharedArray) = unsafe_convert(Ptr{T}, sdata(S))

function convert(::Type{SharedArray}, A::Array)
S = SharedArray(eltype(A), size(A))
S = SharedArray{eltype(A),ndims(A)}(size(A))
copy!(S, A)
end
function convert{T}(::Type{SharedArray{T}}, A::Array)
S = SharedArray(T, size(A))
S = SharedArray{T,ndims(A)}(size(A))
copy!(S, A)
end
function convert{TS,TA,N}(::Type{SharedArray{TS,N}}, A::Array{TA,N})
S = SharedArray(TS, size(A))
S = SharedArray{TS,ndims(A)}(size(A))
copy!(S, A)
end

function deepcopy_internal(S::SharedArray, stackdict::ObjectIdDict)
haskey(stackdict, S) && return stackdict[S]
R = SharedArray(eltype(S), size(S); pids = S.pids)
R = SharedArray{eltype(S),ndims(S)}(size(S); pids = S.pids)
copy!(sdata(R), sdata(S))
stackdict[S] = R
return R
Expand Down Expand Up @@ -468,16 +474,16 @@ end

# convenience constructors
function shmem_fill(v, dims; kwargs...)
SharedArray(typeof(v), dims; init = S->fill!(S.loc_subarr_1d, v), kwargs...)
SharedArray{typeof(v),length(dims)}(dims; init = S->fill!(S.loc_subarr_1d, v), kwargs...)
end
shmem_fill(v, I::Int...; kwargs...) = shmem_fill(v, I; kwargs...)

# rand variant with range
function shmem_rand(TR::Union{DataType, UnitRange}, dims; kwargs...)
if isa(TR, UnitRange)
SharedArray(Int, dims; init = S -> map!(x -> rand(TR), S.loc_subarr_1d, S.loc_subarr_1d), kwargs...)
SharedArray{Int,length(dims)}(dims; init = S -> map!(x -> rand(TR), S.loc_subarr_1d, S.loc_subarr_1d), kwargs...)
else
SharedArray(TR, dims; init = S -> map!(x -> rand(TR), S.loc_subarr_1d, S.loc_subarr_1d), kwargs...)
SharedArray{TR,length(dims)}(dims; init = S -> map!(x -> rand(TR), S.loc_subarr_1d, S.loc_subarr_1d), kwargs...)
end
end
shmem_rand(TR::Union{DataType, UnitRange}, i::Int; kwargs...) = shmem_rand(TR, (i,); kwargs...)
Expand All @@ -487,7 +493,7 @@ shmem_rand(dims; kwargs...) = shmem_rand(Float64, dims; kwargs...)
shmem_rand(I::Int...; kwargs...) = shmem_rand(I; kwargs...)

function shmem_randn(dims; kwargs...)
SharedArray(Float64, dims; init = S-> map!(x -> randn(), S.loc_subarr_1d, S.loc_subarr_1d), kwargs...)
SharedArray{Float64,length(dims)}(dims; init = S-> map!(x -> randn(), S.loc_subarr_1d, S.loc_subarr_1d), kwargs...)
end
shmem_randn(I::Int...; kwargs...) = shmem_randn(I; kwargs...)

Expand Down
2 changes: 1 addition & 1 deletion base/sparse/sparsematrix.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1390,7 +1390,7 @@ speye_scaled(diag, m::Integer, n::Integer) = speye_scaled(typeof(diag), diag, m,
function speye_scaled(T, diag, m::Integer, n::Integer)
((m < 0) || (n < 0)) && throw(ArgumentError("invalid array dimensions"))
nnz = min(m,n)
colptr = Array(Int, 1+n)
colptr = Array{Int,1}(1+n)
colptr[1:nnz+1] = 1:nnz+1
colptr[nnz+2:end] = nnz+1
SparseMatrixCSC(Int(m), Int(n), colptr, Vector{Int}(1:nnz), fill!(Vector{T}(nnz), diag))
Expand Down
6 changes: 3 additions & 3 deletions base/sparse/sparsevector.jl
Original file line number Diff line number Diff line change
Expand Up @@ -563,7 +563,7 @@ end

function find{Tv,Ti}(x::SparseVector{Tv,Ti})
numnz = nnz(x)
I = Array(Ti, numnz)
I = Array{Ti,1}(numnz)

nzind = x.nzind
nzval = x.nzval
Expand All @@ -587,8 +587,8 @@ end
function findnz{Tv,Ti}(x::SparseVector{Tv,Ti})
numnz = nnz(x)

I = Array(Ti, numnz)
V = Array(Tv, numnz)
I = Array{Ti,1}(numnz)
V = Array{Tv,1}(numnz)

nzind = x.nzind
nzval = x.nzval
Expand Down
6 changes: 0 additions & 6 deletions base/sysimg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -99,12 +99,6 @@ include("subarray.jl")
(::Type{Matrix{T}}){T}(m::Integer, n::Integer) = Matrix{T}(Int(m), Int(n))
(::Type{Matrix})(m::Integer, n::Integer) = Matrix{Any}(Int(m), Int(n))

# TODO: possibly turn these into deprecations
Array{T}(::Type{T}, d::Integer...) = Array(T, convert(Tuple{Vararg{Int}}, d))
Array{T}(::Type{T}, m::Integer) = Array{T,1}(Int(m))
Array{T}(::Type{T}, m::Integer,n::Integer) = Array{T,2}(Int(m),Int(n))
Array{T}(::Type{T}, m::Integer,n::Integer,o::Integer) = Array{T,3}(Int(m),Int(n),Int(o))

# numeric operations
include("hashing.jl")
include("rounding.jl")
Expand Down
14 changes: 7 additions & 7 deletions doc/src/manual/parallel-computing.md
Original file line number Diff line number Diff line change
Expand Up @@ -312,7 +312,7 @@ Parallel for loops like these must be avoided. Fortunately, [Shared Arrays](@ref
to get around this limitation:

```julia
a = SharedArray(Float64,10)
a = SharedArray{Float64}(10)
@parallel for i=1:10
a[i] = i
end
Expand Down Expand Up @@ -720,10 +720,10 @@ just returns the object itself, so it's safe to use [`sdata()`](@ref) on any `Ar
The constructor for a shared array is of the form:

```julia
SharedArray(T::Type, dims::NTuple; init=false, pids=Int[])
SharedArray{T,N}(dims::NTuple; init=false, pids=Int[])
```

which creates a shared array of a bits type `T` and size `dims` across the processes specified
which creates an `N`-dimensional shared array of a bits type `T` and size `dims` across the processes specified
by `pids`. Unlike distributed arrays, a shared array is accessible only from those participating
workers specified by the `pids` named argument (and the creating process too, if it is on the
same host).
Expand All @@ -741,7 +741,7 @@ julia> addprocs(3)
3
4

julia> S = SharedArray(Int, (3,4), init = S -> S[Base.localindexes(S)] = myid())
julia> S = SharedArray{Int,2}((3,4), init = S -> S[Base.localindexes(S)] = myid())
3×4 SharedArray{Int64,2}:
2 2 3 4
2 3 3 4
Expand All @@ -762,7 +762,7 @@ convenient for splitting up tasks among processes. You can, of course, divide th
you wish:

```julia
julia> S = SharedArray(Int, (3,4), init = S -> S[indexpids(S):length(procs(S)):length(S)] = myid())
julia> S = SharedArray{Int,2}((3,4), init = S -> S[indexpids(S):length(procs(S)):length(S)] = myid())
3×4 SharedArray{Int64,2}:
2 2 2 2
3 3 3 3
Expand Down Expand Up @@ -861,8 +861,8 @@ end
If we create `SharedArray`s and time these functions, we get the following results (with `julia -p 4`):

```julia
q = SharedArray(Float64, (500,500,500))
u = SharedArray(Float64, (500,500,500))
q = SharedArray{Float64,3}((500,500,500))
u = SharedArray{Float64,3}((500,500,500))

# Run once to JIT-compile
advection_serial!(q, u)
Expand Down
2 changes: 1 addition & 1 deletion src/julia-syntax.scm
Original file line number Diff line number Diff line change
Expand Up @@ -2242,7 +2242,7 @@
,.(map (lambda (v r) `(= ,v (call (top length) ,r))) lengths rv)
(scope-block
(block
(= ,result (call (core Array) ,atype ,@lengths))
(= ,result (call (curly Array ,atype ,(length lengths)) ,@lengths))
(= ,ri 1)
,(construct-loops (reverse ranges) (reverse rv) is states (reverse lengths))
,result)))))
Expand Down
Loading