Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

A[c|t]_mul_B[!] specializations for SparseMatrixCSC-StridedVecOrMat, less generalized linear indexing and meta-fu #20043

Merged
merged 1 commit into from
Jan 15, 2017
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
107 changes: 65 additions & 42 deletions base/sparse/linalg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -43,54 +43,77 @@ end

# In matrix-vector multiplication, the correct orientation of the vector is assumed.

for (f, op, transp) in ((:A_mul_B, :identity, false),
(:Ac_mul_B, :ctranspose, true),
(:At_mul_B, :transpose, true))
@eval begin
function $(Symbol(f,:!))(α::Number, A::SparseMatrixCSC, B::StridedVecOrMat, β::Number, C::StridedVecOrMat)
if $transp
A.n == size(C, 1) || throw(DimensionMismatch())
A.m == size(B, 1) || throw(DimensionMismatch())
else
A.n == size(B, 1) || throw(DimensionMismatch())
A.m == size(C, 1) || throw(DimensionMismatch())
end
size(B, 2) == size(C, 2) || throw(DimensionMismatch())
nzv = A.nzval
rv = A.rowval
if β != 1
β != 0 ? scale!(C, β) : fill!(C, zero(eltype(C)))
end
for col = 1:A.n
for k = 1:size(C, 2)
if $transp
tmp = zero(eltype(C))
@inbounds for j = A.colptr[col]:(A.colptr[col + 1] - 1)
tmp += $(op)(nzv[j])*B[rv[j],k]
end
C[col,k] += α*tmp
else
αxj = α*B[col,k]
@inbounds for j = A.colptr[col]:(A.colptr[col + 1] - 1)
C[rv[j], k] += nzv[j]*αxj
end
end
end
end
C
end
A_mul_B(A::SparseMatrixCSC, B::StridedVecOrMat) = A_mul_B!(_argstuple_AqmulB!(A, B)...)
At_mul_B(A::SparseMatrixCSC, B::StridedVecOrMat) = At_mul_B!(_argstuple_AqmulB!(A, B)...)
Ac_mul_B(A::SparseMatrixCSC, B::StridedVecOrMat) = Ac_mul_B!(_argstuple_AqmulB!(A, B)...)
_argstuple_AqmulB!{TvA,TB}(A::SparseMatrixCSC{TvA}, b::StridedVector{TB}) =
(R = promote_type(TvA, TB); (one(R), A, B, zero(R), similar(b, R, A.n)))
_argstuple_AqmulB!{TvA,TB}(A::SparseMatrixCSC{TvA}, B::StridedMatrix{TB}) =
(R = promote_type(TvA, TB); (one(R), A, B, zero(R), similar(B, R, (A.n, size(B,2)))))

A_mul_B!(α::Number, A::SparseMatrixCSC, B::StridedVecOrMat, β::Number, C::StridedVecOrMat) =
_Aq_mul_B!(α, A, identity, B, β, C)
At_mul_B!(α::Number, A::SparseMatrixCSC, B::StridedVecOrMat, β::Number, C::StridedVecOrMat) =
_Aq_mul_B!(α, A, transpose, B, β, C)
Ac_mul_B!(α::Number, A::SparseMatrixCSC, B::StridedVecOrMat, β::Number, C::StridedVecOrMat) =
_Aq_mul_B!(α, A, ctranspose, B, β, C)

function _Aq_mul_B!(α::Number, A::SparseMatrixCSC, transopA::Function,
B::StridedVecOrMat, β::Number, C::StridedVecOrMat)
_AqmulB_checkshapecompat(A, transopA, B, C)
_AqmulB_specialscale!(C, β)
_AqmulB_kernel!(α, A, transopA, B, C)
return C
end

function $(f){TA,S,Tx}(A::SparseMatrixCSC{TA,S}, x::StridedVector{Tx})
T = promote_type(TA, Tx)
$(Symbol(f,:!))(one(T), A, x, zero(T), similar(x, T, A.n))
qtransposefntype = Union{typeof(transpose), typeof(ctranspose)}
_AqmulB_checkshapecompat(A, ::typeof(identity), B, C) = _AqmulB_checkshapecompat(A.m, A.n, B, C)
_AqmulB_checkshapecompat(A, ::qtransposefntype, B, C) = _AqmulB_checkshapecompat(A.n, A.m, B, C)
function _AqmulB_checkshapecompat(Aqm, Aqn, B, C)
size(B, 1) == Aqn || throw(DimensionMismatch())
size(C, 1) == Aqm || throw(DimensionMismatch())
size(B, 2) == size(C, 2) || throw(DimensionMismatch())
end

_AqmulB_specialscale!(C::StridedVecOrMat, β::Number) =
β == 1 || (β == 0 ? fill!(C, zero(eltype(C))) : scale!(C, β))

function _AqmulB_kernel!(α::Number, A::SparseMatrixCSC, ::typeof(identity), B::Vector, C::Vector)
for colA in 1:A.n
αBforcolA = α * B[colA]
@inbounds for indA in nzrange(A, colA)
C[A.rowval[indA]] += A.nzval[indA] * αBforcolA
end
end
end
function _AqmulB_kernel!(α::Number, A::SparseMatrixCSC, ::typeof(identity), B::Matrix, C::Matrix)
for colA in 1:A.n, colC in size(C, 2)
αBforcolAcolC = α * B[colA, colC]
@inbounds for indA in nzrange(A, colA)
C[A.rowval[indA], colC] += A.nzval[indA] * αBforcolAcolC
end
function $(f){TA,S,Tx}(A::SparseMatrixCSC{TA,S}, B::StridedMatrix{Tx})
T = promote_type(TA, Tx)
$(Symbol(f,:!))(one(T), A, B, zero(T), similar(B, T, (A.n, size(B, 2))))
end
end
function _AqmulB_kernel!(α::Number, A::SparseMatrixCSC, op::qtransposefntype, B::Vector, C::Vector)
for colA in 1:A.n
accumulator = zero(eltype(C))
@inbounds for indA in nzrange(A, colA)
accumulator += op(A.nzval[indA]) * B[A.rowval[indA]]
end
C[colA] += α * accumulator
end
end
function _AqmulB_kernel!(α::Number, A::SparseMatrixCSC, op::qtransposefntype, B::Matrix, C::Matrix)
for colA in 1:A.n, colC in 1:size(C, 2)
accumulator = zero(eltype(C))
@inbounds for indA in nzrange(A, colA)
accumulator += op(A.nzval[indA]) * B[A.rowval[indA], colC]
end
C[colA, colC] += α * accumulator
end
end


# For compatibility with dense multiplication API. Should be deleted when dense multiplication
# API is updated to follow BLAS API.
A_mul_B!(C::StridedVecOrMat, A::SparseMatrixCSC, B::StridedVecOrMat) = A_mul_B!(one(eltype(B)), A, B, zero(eltype(C)), C)
Expand Down