Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RFC: Implement unique consistently #29038

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
217 changes: 113 additions & 104 deletions base/set.jl
Original file line number Diff line number Diff line change
Expand Up @@ -89,46 +89,7 @@ julia> unique(Real[1, 1.0, 2])
2
```
"""
function unique(itr)
T = @default_eltype(itr)
out = Vector{T}()
seen = Set{T}()
y = iterate(itr)
y === nothing && return out
x, i = y
if !isconcretetype(T) && IteratorEltype(itr) == EltypeUnknown()
S = typeof(x)
return _unique_from(itr, S[x], Set{S}((x,)), i)
end
push!(seen, x)
push!(out, x)
return unique_from(itr, out, seen, i)
end

_unique_from(itr, out, seen, i) = unique_from(itr, out, seen, i)
@inline function unique_from(itr, out::Vector{T}, seen, i) where T
while true
y = iterate(itr, i)
y === nothing && break
x, i = y
S = typeof(x)
if !(S === T || S <: T)
R = promote_typejoin(S, T)
seenR = convert(Set{R}, seen)
outR = convert(Vector{R}, out)
if !in(x, seenR)
push!(seenR, x)
push!(outR, x)
end
return _unique_from(itr, outR, seenR, i)
end
if !in(x, seen)
push!(seen, x)
push!(out, x)
end
end
return out
end
unique(itr) = _unique(itr)

"""
unique(f, itr)
Expand All @@ -145,57 +106,7 @@ julia> unique(x -> x^2, [1, -1, 3, -3, 4])
4
```
"""
function unique(f::Callable, C)
out = Vector{eltype(C)}()
seen = Set()
for x in C
y = f(x)
if !in(y, seen)
push!(seen, y)
push!(out, x)
end
end
out
end

# If A is not grouped, then we will need to keep track of all of the elements that we have
# seen so far.
function _unique!(A::AbstractVector)
seen = Set{eltype(A)}()
idxs = eachindex(A)
y = iterate(idxs)
count = 0
for x in A
if x ∉ seen
push!(seen, x)
count += 1
A[y[1]] = x
y = iterate(idxs, y[2])
end
end
resize!(A, count)
end

# If A is grouped, so that each unique element is in a contiguous group, then we only
# need to keep track of one element at a time. We replace the elements of A with the
# unique elements that we see in the order that we see them. Once we have iterated
# through A, we resize A based on the number of unique elements that we see.
function _groupedunique!(A::AbstractVector)
isempty(A) && return A
idxs = eachindex(A)
y = first(A)
# We always keep the first element
it = iterate(idxs, iterate(idxs)[2])
count = 1
for x in Iterators.drop(A, 1)
if !isequal(x, y)
y = A[it[1]] = x
count += 1
it = iterate(idxs, it[2])
end
end
resize!(A, count)
end
unique(f::Callable, itr) = _unique(itr, f)

"""
unique!(A::AbstractVector)
Expand Down Expand Up @@ -231,26 +142,124 @@ julia> unique!(B)
42
```
"""
function unique!(A::Union{AbstractVector{<:Real}, AbstractVector{<:AbstractString},
AbstractVector{<:Symbol}})
if isempty(A)
return A
elseif issorted(A) || issorted(A, rev=true)
return _groupedunique!(A)
unique!(A::AbstractVector) = _unique!(A, nothing, false)

# issorted fails for some element types, so the method above has to be restricted to
# elements with isless/< defined. "hasmethod(isless,...)" is too slow for this purpose.
unique!(A::AbstractVector{<:Union{Real,AbstractString,Symbol}}) =
_unique!(A, nothing, issorted(A) || issorted(A, rev = true))


"""
unique!(f, A::AbstractVector)

Modifies the array `A` to contain one value from `A` for each unique value produced by `f`
applied to elements of `A`.

# Examples
```jldoctest
julia> unique!(x -> x^2, [1, -1, 3, -3, 4])
3-element Array{Int64,1}:
1
3
4
```
"""
unique!(f::Callable, A::AbstractVector) = _unique!(A, f, false)

# Two concrete types for inplace and out of place unique algorithms
abstract type Uniquifier end
struct UO{I,T,S} <: Uniquifier itr::I; out::Vector{T}; seen::Set{S}; end
struct UI{I,S} <: Uniquifier itr::I; seen::Set{S}; i::Vector{Int}; end
struct UOF{I,T,S,F <: Callable} <: Uniquifier itr::I; out::Vector{T}; seen::Set{S}; f::F; end
struct UIF{I,S,F <: Callable} <: Uniquifier itr::I; seen::Set{S}; i::Vector{Int}; f::F; end

# Implementation bodies for unique and unique!
function _unique(itr, f::Union{Nothing, Callable} = nothing)
T = @default_eltype(itr)
y = iterate(itr)
y === nothing && return T[]
x, st = y
R = !isconcretetype(T) && IteratorEltype(itr) == EltypeUnknown() ? typeof(x) : T
if f !== nothing
fx = f(x)
return __uniquify(UOF(itr, R[], Set{typeof(fx)}(), f), st, x, fx)
else
return _unique!(A)
return __uniquify(UO(itr, R[], Set{R}()), st, x)
end
end
# issorted fails for some element types, so the method above has to be restricted to
# elements with isless/< defined.
function unique!(A)
if isempty(A)
return A

function _unique!(A::AbstractVector, f::Union{Callable, Nothing}, sorted::Bool)
isempty(A) && return A
sorted && return _uniquify_sorted(A)
x, st = iterate(A)
if f !== nothing
fx = f(x)
return __uniquify(UIF(A, Set{typeof(fx)}(), [firstindex(A)], f), st, x, fx)
else
return _unique!(A)
return __uniquify(UI(A, Set{typeof(x)}(), [firstindex(A)]), st, x)
end
end

# Generic implementations of unique/unique! with and without function application
__uniquify(u, st, x, fx = nothing) = _uniquify(u, st, x, fx)
@inline function _uniquify(u::T, st, x, fx = nothing) where {T<:Uniquifier}
_register(u, x, fx)
y = iterate(u.itr, st)
while y !== nothing
x, st = y
fx = _element(u, x)
_fits(u, x, fx) || return __uniquify(_recreate(u, x, fx), st, x, fx)
_register(u, x, fx)
y = iterate(u.itr, st)
end
return _finish(u)
end

# Specififc implementation for sorted data with inplace update
function _uniquify_sorted(A::AbstractVector)
i = firstindex(A) + 1
a = iterate(A)
lx, st = a
while a !== nothing
x, st = a
isequal(lx, x) || (lx = A[i] = x; i += 1)
a = iterate(A, st)
end
resize!(A, i - firstindex(A))
end

@inline _element(u::Union{UOF,UIF}, x) = u.f(x)
@inline _element(::Union{UO,UI}, ::Any) = nothing

# checks if the value has been dealt with before and process it otherwise
@inline _register(u::UO, x, ::Nothing) = !in(x, u.seen) && (push!(u.seen, x); push!(u.out, x))
@inline _register(u::UI, x, ::Nothing) = !in(x, u.seen) && (push!(u.seen, x); u.itr[u.i[1]] = x; u.i[1] += 1)
@inline _register(u::UOF, x, fx) = !in(fx, u.seen) && (push!(u.seen, fx); push!(u.out, x))
@inline _register(u::UIF, x, fx) = !in(fx, u.seen) && (push!(u.seen, fx); u.itr[u.i[1]] = x; u.i[1] += 1)

# Does the current values fit in the data structures?
@inline _fits(u::UOF{I,T,S}, x, fx) where {I,T,S} = x isa T && fx isa S
@inline _fits(u::UIF{I,S}, x, fx) where {I,S} = fx isa S
@inline _fits(u::UO{I,T,S}, x, ::Nothing) where {I,T,S} = x isa T
@inline _fits(u::UI{I,S}, x, ::Nothing) where {I,S} = x isa S

# Recreates the data structures with adjusted types
_recreate(u::UOF, x, fx) = UOF(u.itr, _adjust(u.out, x), _adjust(u.seen, fx), u.f)
_recreate(u::UIF, x, fx) = UIF(u.itr, _adjust(u.seen, fx), u.i, u.f)
_recreate(u::UO, x, ::Nothing) = UO(u.itr, _adjust(u.out, x), _adjust(u.seen, x))
_recreate(u::UI, x, ::Nothing) = UI(u.itr, _adjust(u.seen, x), u.i)
# if an unfitting element type appears, adjust the data structures
# make sure the 'out' array always fits the element
# if the 'seen' set has to deal abstract type switch to Any
_adjust(out::Vector{T}, ::U) where {T,U} = convert(Vector{promote_typejoin(T,U)}, out)
_adjust(seen::Set{T}, ::U) where {T,U} = convert(Set{T === U ? T : Any}, seen)

# return of uniquify functions depends on inplace/out of place
_finish(u::Union{UO,UOF}) = u.out
_finish(u::Union{UI,UIF}) = resize!(u.itr, u.i[1] - firstindex(u.itr))


"""
allunique(itr) -> Bool

Expand Down
22 changes: 22 additions & 0 deletions test/sets.jl
Original file line number Diff line number Diff line change
Expand Up @@ -381,6 +381,28 @@ end
u = [1,2,5,1,3,2]
end

@testset "unique(!) types" begin
@test @inferred(unique!(collect(1:1))) == [1]
@test unique(Real[1., 1])::Vector{Real} == unique!(Real[1., 1])::Vector{Real} == [1.]
@test unique(Real[1, 1.])::Vector{Real} == unique!(Real[1, 1.])::Vector{Real} == [1]
for t in [Int, Integer, Any]
a = t[1,-1, 1, -1]
g = (x for x in a)
@test unique(abs,a)::typeof(a) == unique!(abs, copy(a))::typeof(a) == [1]
@test unique(a)::typeof(a) == unique!(copy(a))::typeof(a) == [1,-1]
@test unique(abs, g)::Vector{Int} == [1]
@test unique(g)::Vector{Int} == [1,-1]
end
end

@testset "unique!(f)" begin
a = [5, 1, 8, 9, 3, 4, 10, 7, 2, 6]
b = copy(a)
@test unique!(iseven, a) === a == [5, 8]
@test unique!(n -> n % 3, b) === b == [5, 1, 9]
@test unique!(n -> n % 3, Int[]) == Int[]
end

@testset "allunique" begin
@test allunique([])
@test allunique(Set())
Expand Down