Skip to content

Commit

Permalink
doc: add missing doc for beta_inc_inv (#467)
Browse files Browse the repository at this point in the history
* Export function only in SpecialFunctions.jl

* doc: add missing doc for `beta_inc_inv`

* doc: remove link in title

* Update docs/src/functions_overview.md
  • Loading branch information
inkydragon authored Apr 9, 2024
1 parent dc9ba56 commit ff76c3a
Show file tree
Hide file tree
Showing 3 changed files with 20 additions and 6 deletions.
8 changes: 6 additions & 2 deletions docs/src/functions_overview.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,10 @@
Here the *Special Functions* are listed according to the structure of [NIST Digital Library of Mathematical Functions](https://dlmf.nist.gov/).


## [Gamma Function](https://dlmf.nist.gov/5)
## Gamma Function

- [Gamma Function - DLMF](https://dlmf.nist.gov/5)

| Function | Description |
|:-------- |:----------- |
| [`gamma(z)`](@ref SpecialFunctions.gamma(::Number)) | [gamma function](https://en.wikipedia.org/wiki/Gamma_function) ``\Gamma(z)`` |
Expand All @@ -16,12 +19,13 @@ Here the *Special Functions* are listed according to the structure of [NIST Digi
| [`gamma(a,z)`](@ref SpecialFunctions.gamma(::Number,::Number)) | [upper incomplete gamma function ``\Gamma(a,z)``](https://en.wikipedia.org/wiki/Incomplete_gamma_function) |
| [`loggamma(a,z)`](@ref SpecialFunctions.loggamma(::Number,::Number)) | accurate `log(gamma(a,x))` for large arguments |
| [`gamma_inc(a,x,IND)`](@ref SpecialFunctions.gamma_inc) | [incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates P(a,x) and Q(a,x)for accuracy specified by IND and returns tuple (p,q)) |
| [`beta_inc(a,b,x,y)`](@ref SpecialFunctions.beta_inc) | [incomplete beta function ratio Ix(a,b) and Iy(a,b)](https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function) (i.e evaluates Ix(a,b) and Iy(a,b) and returns tuple (p,q)) |
| [`gamma_inc_inv(a,p,q)`](@ref SpecialFunctions.gamma_inc_inv) | [inverse of incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates x given P(a,x)=p and Q(a,x)=q |
| [`beta(x,y)`](@ref SpecialFunctions.beta) | [beta function](https://en.wikipedia.org/wiki/Beta_function) at `x,y` |
| [`logbeta(x,y)`](@ref SpecialFunctions.logbeta) | accurate `log(beta(x,y))` for large `x` or `y` |
| [`logabsbeta(x,y)`](@ref SpecialFunctions.logabsbeta) | accurate `log(abs(beta(x,y)))` for large `x` or `y` |
| [`logabsbinomial(x,y)`](@ref SpecialFunctions.logabsbinomial) | accurate `log(abs(binomial(n,k)))` for large `n` and `k` near `n/2` |
| [`beta_inc(a,b,x,y)`](@ref SpecialFunctions.beta_inc) | [incomplete beta function ratio Ix(a,b) and Iy(a,b)](https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function) (i.e evaluates Ix(a,b) and Iy(a,b) and returns tuple (p,q)) |
| [`beta_inc_inv(a,b,p,q)`](@ref SpecialFunctions.beta_inc_inv) | Inverse of the incomplete beta function (i.e evaluates x given ``I_{x}(a, b) = p``) |


## [Exponential and Trigonometric Integrals](https://dlmf.nist.gov/6)
Expand Down
16 changes: 14 additions & 2 deletions src/SpecialFunctions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -58,14 +58,26 @@ export
logerfcx,
faddeeva,
eta,

# Gamma functions
gamma,
loggamma,
logabsgamma,
logfactorial,
digamma,
invdigamma,
polygamma,
trigamma,
polygamma,
gamma_inc,
gamma_inc_inv,
# beta functions
beta,
logbeta,
logabsbeta,
logabsbinomial,
beta_inc,
beta_inc_inv,
gamma_inc_inv,

ncbeta,
ncF,
hankelh1,
Expand Down
2 changes: 0 additions & 2 deletions src/gamma.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,6 @@

using Base.MPFR: MPFRRoundingMode, ROUNDING_MODE

export gamma, loggamma, logabsgamma, beta, logbeta, logabsbeta, logfactorial, logabsbinomial

const ComplexOrReal{T} = Union{T,Complex{T}}

# Bernoulli numbers B_{2k}, using tabulated numerators and denominators from
Expand Down

0 comments on commit ff76c3a

Please sign in to comment.