Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding target option #62

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 8 additions & 5 deletions ext/JACCAMDGPU/JACCAMDGPU.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,15 @@ module JACCAMDGPU

using JACC, AMDGPU

function JACC.parallel_for(N::I, f::F, x::Vararg{Union{<:Number,<:ROCArray}}) where {I<:Integer,F<:Function}
function JACC.parallel_for(::ROCBackend, N::I, f::F, x...) where {I<:Integer,F<:Function}
numThreads = 512
threads = min(N, numThreads)
blocks = ceil(Int, N / threads)
@roc groupsize = threads gridsize = blocks _parallel_for_amdgpu(f, x...)
AMDGPU.synchronize()
end

function JACC.parallel_for((M, N)::Tuple{I,I}, f::F, x::Vararg{Union{<:Number,<:ROCArray}}) where {I<:Integer,F<:Function}
function JACC.parallel_for(::ROCBackend, (M, N)::Tuple{I,I}, f::F, x...) where {I<:Integer,F<:Function}
numThreads = 16
Mthreads = min(M, numThreads)
Nthreads = min(N, numThreads)
Expand All @@ -20,7 +20,7 @@ function JACC.parallel_for((M, N)::Tuple{I,I}, f::F, x::Vararg{Union{<:Number,<:
AMDGPU.synchronize()
end

function JACC.parallel_reduce(N::I, f::F, x::Vararg{Union{<:Number,<:ROCArray}}) where {I<:Integer,F<:Function}
function JACC.parallel_reduce(::ROCBackend, N::I, f::F, x...) where {I<:Integer,F<:Function}
numThreads = 512
threads = min(N, numThreads)
blocks = ceil(Int, N / threads)
Expand All @@ -34,7 +34,7 @@ function JACC.parallel_reduce(N::I, f::F, x::Vararg{Union{<:Number,<:ROCArray}})

end

function JACC.parallel_reduce((M, N)::Tuple{I,I}, f::F, x::Vararg{Union{<:Number,<:ROCArray}}) where {I<:Integer,F<:Function}
function JACC.parallel_reduce(::ROCBackend, (M, N)::Tuple{I,I}, f::F, x...) where {I<:Integer,F<:Function}
numThreads = 16
Mthreads = min(M, numThreads)
Nthreads = min(N, numThreads)
Expand Down Expand Up @@ -300,7 +300,10 @@ function reduce_kernel_amdgpu_MN((M, N), red, ret)
end

function __init__()
const JACC.Array = AMDGPU.ROCArray{T,N} where {T,N}
if JACC.JACCPreferences.backend == "amdgpu"
const JACC.default_backend = ROCBackend()
@info "Set default backend to $(JACC.default_backend)"
end
end

end # module JACCAMDGPU
13 changes: 8 additions & 5 deletions ext/JACCCUDA/JACCCUDA.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,14 +2,14 @@ module JACCCUDA

using JACC, CUDA

function JACC.parallel_for(N::I, f::F, x::Vararg{Union{<:Number,<:CuArray}}) where {I<:Integer,F<:Function}
function JACC.parallel_for(::CUDABackend, N::I, f::F, x...) where {I<:Integer,F<:Function}
maxPossibleThreads = attribute(device(), CUDA.DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X)
threads = min(N, maxPossibleThreads)
blocks = ceil(Int, N / threads)
CUDA.@sync @cuda threads = threads blocks = blocks _parallel_for_cuda(f, x...)
end

function JACC.parallel_for((M, N)::Tuple{I,I}, f::F, x::Vararg{Union{<:Number,<:CuArray}}) where {I<:Integer,F<:Function}
function JACC.parallel_for(::CUDABackend, (M, N)::Tuple{I,I}, f::F, x...) where {I<:Integer,F<:Function}
numThreads = 16
Mthreads = min(M, numThreads)
Nthreads = min(N, numThreads)
Expand All @@ -18,7 +18,7 @@ function JACC.parallel_for((M, N)::Tuple{I,I}, f::F, x::Vararg{Union{<:Number,<:
CUDA.@sync @cuda threads = (Mthreads, Nthreads) blocks = (Mblocks, Nblocks) _parallel_for_cuda_MN(f, x...)
end

function JACC.parallel_reduce(N::I, f::F, x::Vararg{Union{<:Number,<:CuArray}}) where {I<:Integer,F<:Function}
function JACC.parallel_reduce(::CUDABackend, N::I, f::F, x...) where {I<:Integer,F<:Function}
numThreads = 512
threads = min(N, numThreads)
blocks = ceil(Int, N / threads)
Expand All @@ -30,7 +30,7 @@ function JACC.parallel_reduce(N::I, f::F, x::Vararg{Union{<:Number,<:CuArray}})
end


function JACC.parallel_reduce((M, N)::Tuple{I,I}, f::F, x::Vararg{Union{<:Number,<:CuArray}}) where {I<:Integer,F<:Function}
function JACC.parallel_reduce(::CUDABackend, (M, N)::Tuple{I,I}, f::F, x...) where {I<:Integer,F<:Function}
numThreads = 16
Mthreads = min(M, numThreads)
Nthreads = min(N, numThreads)
Expand Down Expand Up @@ -294,7 +294,10 @@ function reduce_kernel_cuda_MN((M, N), red, ret)
end

function __init__()
const JACC.Array = CUDA.CuArray{T,N} where {T,N}
if JACC.JACCPreferences.backend == "cuda"
const JACC.default_backend = CUDABackend()
@info "Set default backend to $(JACC.default_backend)"
end
end

end # module JACCCUDA
13 changes: 8 additions & 5 deletions ext/JACCONEAPI/JACCONEAPI.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,15 +3,15 @@ module JACCONEAPI

using JACC, oneAPI

function JACC.parallel_for(N::I, f::F, x::Vararg{Union{<:Number,<:oneArray}}) where {I<:Integer,F<:Function}
function JACC.parallel_for(::oneAPIBackend, N::I, f::F, x...) where {I<:Integer,F<:Function}
#maxPossibleItems = oneAPI.oneL0.compute_properties(device().maxTotalGroupSize)
maxPossibleItems = 256
items = min(N, maxPossibleItems)
groups = ceil(Int, N / items)
oneAPI.@sync @oneapi items = items groups = groups _parallel_for_oneapi(f, x...)
end

function JACC.parallel_for((M, N)::Tuple{I,I}, f::F, x::Vararg{Union{<:Number,<:oneArray}}) where {I<:Integer,F<:Function}
function JACC.parallel_for(::oneAPIBackend, (M, N)::Tuple{I,I}, f::F, x...) where {I<:Integer,F<:Function}
maxPossibleItems = 16
Mitems = min(M, maxPossibleItems)
Nitems = min(N, maxPossibleItems)
Expand All @@ -20,7 +20,7 @@ function JACC.parallel_for((M, N)::Tuple{I,I}, f::F, x::Vararg{Union{<:Number,<:
oneAPI.@sync @oneapi items = (Mitems, Nitems) groups = (Mgroups, Ngroups) _parallel_for_oneapi_MN(f, x...)
end

function JACC.parallel_reduce(N::I, f::F, x::Vararg{Union{<:Number,<:oneArray}}) where {I<:Integer,F<:Function}
function JACC.parallel_reduce(::oneAPIBackend, N::I, f::F, x...) where {I<:Integer,F<:Function}
numItems = 256
items = min(N, numItems)
groups = ceil(Int, N / items)
Expand All @@ -31,7 +31,7 @@ function JACC.parallel_reduce(N::I, f::F, x::Vararg{Union{<:Number,<:oneArray}})
return rret
end

function JACC.parallel_reduce((M, N)::Tuple{I,I}, f::F, x::Vararg{Union{<:Number,<:oneArray}}) where {I<:Integer,F<:Function}
function JACC.parallel_reduce(::oneAPIBackend, (M, N)::Tuple{I,I}, f::F, x...) where {I<:Integer,F<:Function}
numItems = 16
Mitems = min(M, numItems)
Nitems = min(N, numItems)
Expand Down Expand Up @@ -294,7 +294,10 @@ function reduce_kernel_oneapi_MN((M, N), red, ret)
end

function __init__()
const JACC.Array = oneAPI.oneArray{T,N} where {T,N}
if JACC.JACCPreferences.backend == "oneapi"
const JACC.default_backend = oneAPIBackend()
@info "Set default backend to $(JACC.default_backend)"
end
end

end # module JACCONEAPI
45 changes: 34 additions & 11 deletions src/JACC.jl
Original file line number Diff line number Diff line change
@@ -1,29 +1,49 @@
module JACC

# module to set back end preferences
# module to set back end preferences
include("JACCPreferences.jl")
include("helper.jl")

export Array
export parallel_for
export parallel_for, parallel_reduce, ThreadsBackend, print_default_backend

global Array
struct ThreadsBackend end

function parallel_for(N::I, f::F, x::Vararg{Union{<:Number,<:Base.Array}}) where {I<:Integer,F<:Function}
export default_backend

global default_backend = ThreadsBackend()

# default backend API
function parallel_for(N::I, f::F, x...) where {I<:Integer,F<:Function}
parallel_for(default_backend, N, f, x...)
end

function parallel_for((M, N)::Tuple{I,I}, f::F, x...) where {I<:Integer,F<:Function}
parallel_for(default_backend, N, f, x...)
end

function parallel_reduce(N::I, f::F, x...) where {I<:Integer,F<:Function}
parallel_reduce(default_backend, N, f, x...)
end

function parallel_reduce((M, N)::Tuple{I,I}, f::F, x...) where {I<:Integer,F<:Function}
parallel_reduce(default_backend, (M, N), f, x...)
end

function parallel_for(::ThreadsBackend, N::I, f::F, x...) where {I<:Integer,F<:Function}
@maybe_threaded for i in 1:N
f(i, x...)
end
end

function parallel_for((M, N)::Tuple{I,I}, f::F, x::Vararg{Union{<:Number,<:Base.Array}}) where {I<:Integer,F<:Function}
function parallel_for(::ThreadsBackend, (M, N)::Tuple{I,I}, f::F, x...) where {I<:Integer,F<:Function}
@maybe_threaded for j in 1:N
for i in 1:M
f(i, j, x...)
end
end
end

function parallel_reduce(N::I, f::F, x::Vararg{Union{<:Number,<:Base.Array}}) where {I<:Integer,F<:Function}
function parallel_reduce(::ThreadsBackend, N::I, f::F, x...) where {I<:Integer,F<:Function}
tmp = zeros(Threads.nthreads())
ret = zeros(1)
@maybe_threaded for i in 1:N
Expand All @@ -35,7 +55,7 @@ function parallel_reduce(N::I, f::F, x::Vararg{Union{<:Number,<:Base.Array}}) wh
return ret
end

function parallel_reduce((M, N)::Tuple{I,I}, f::F, x::Vararg{Union{<:Number,<:Base.Array}}) where {I<:Integer,F<:Function}
function parallel_reduce(::ThreadsBackend, (M, N)::Tuple{I,I}, f::F, x...) where {I<:Integer,F<:Function}
tmp = zeros(Threads.nthreads())
ret = zeros(1)
@maybe_threaded for j in 1:N
Expand All @@ -50,12 +70,15 @@ function parallel_reduce((M, N)::Tuple{I,I}, f::F, x::Vararg{Union{<:Number,<:Ba
end

function __init__()
@info("Using JACC backend: $(JACCPreferences.backend)")

if JACCPreferences.backend == "threads"
const JACC.Array = Base.Array{T,N} where {T,N}
const JACC.default_backend = ThreadsBackend()
@info "Set default backend to $(JACC.default_backend)"
end
end

function print_default_backend()
println("Default backend is $default_backend")
end


end # module JACC
6 changes: 1 addition & 5 deletions test/Project.toml
Original file line number Diff line number Diff line change
@@ -1,9 +1,5 @@
[deps]
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
Preferences = "21216c6a-2e73-6563-6e65-726566657250"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[weakdeps]
AMDGPU = "21141c5a-9bdb-4563-92ae-f87d6854732e"
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
oneAPI = "8f75cd03-7ff8-4ecb-9b8f-daf728133b1b"
47 changes: 27 additions & 20 deletions test/runtests.jl
Original file line number Diff line number Diff line change
@@ -1,26 +1,33 @@
import JACC
using JACC
using CUDA
using AMDGPU
using oneAPI
using Test

using Pkg

const backend = JACC.JACCPreferences.backend

@static if backend == "cuda"
Pkg.add(name="CUDA", version="v5.1.1")
@show "CUDA backend loaded"
include("tests_cuda.jl")
@testset "JACC Tests" begin
if CUDA.functional()
@testset "CUDA" begin
println("CUDA backend")
include("tests_cuda.jl")
end
end

elseif backend == "amdgpu"
Pkg.add(name="AMDGPU", version="v0.8.6")
@show "AMDGPU backend loaded"
include("tests_amdgpu.jl")
if AMDGPU.functional()
@testset "AMDGPU" begin
println("AMDGPU backend")
include("tests_amdgpu.jl")
end
end

elseif backend == "oneapi"
Pkg.add("oneAPI")
@show "OneAPI backend loaded"
include("tests_oneapi.jl")
if oneAPI.functional()
@testset "oneAPI" begin
println("OneAPI backend")
include("tests_oneapi.jl")
end
end

elseif backend == "threads"
@show "Threads backend loaded"
@testset "ThreadsBackend" begin
println("Threads backend")
include("tests_threads.jl")

end
end
4 changes: 2 additions & 2 deletions test/tests_amdgpu.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,8 @@ end
dims = (N)
a = round.(rand(Float32, dims) * 100)

a_device = JACC.Array(a)
JACC.parallel_for(N, f, a_device)
a_device = ROCArray(a)
JACC.parallel_for(ROCBackend, N, f, a_device)

a_expected = a .+ 5.0
@test Array(a_device) ≈ a_expected rtol = 1e-5
Expand Down
12 changes: 6 additions & 6 deletions test/tests_amdgpu_perf.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ using Test
end

function axpy_amdgpu(SIZE,alpha,x,y)
maxPossibleThreads = 512
maxPossibleThreads = 512
threads = min(SIZE, maxPossibleThreads)
blocks = ceil(Int, SIZE/threads)
@roc groupsize=threads gridsize=threads*blocks axpy_amdgpu_kernel(alpha,x,y)
Expand All @@ -37,13 +37,13 @@ using Test
x = ones(SIZE)
y = ones(SIZE)
alpha = 2.0
jx = JACC.Array(x)
jy = JACC.Array(y)
JACC.parallel_for(10, axpy, alpha, jx, jy)
jx = ROCArray(x)
jy = ROCArray(y)

JACC.parallel_for(ROCBackend(), 10, axpy, alpha, jx, jy)
for i in [10,100,1_000,1_0000,100_000,1_000_000,10_000_000,100_000_000]
@time begin
JACC.parallel_for(i, axpy, alpha, jx, jy)
JACC.parallel_for(ROCBackend(), i, axpy, alpha, jx, jy)
end
end

Expand Down
14 changes: 5 additions & 9 deletions test/tests_cuda.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,6 @@ import JACC
using Test


@testset "TestBackend" begin
@test JACC.JACCPreferences.backend == "cuda"
end

@testset "VectorAddLambda" begin

function f(i, a)
Expand All @@ -17,8 +13,8 @@ end
dims = (N)
a = round.(rand(Float32, dims) * 100)

a_device = JACC.Array(a)
JACC.parallel_for(N, f, a_device)
a_device = CuArray(a)
JACC.parallel_for(CUDABackend(), N, f, a_device)

a_expected = a .+ 5.0
@test Array(a_device) ≈ a_expected rtol = 1e-5
Expand All @@ -43,9 +39,9 @@ end
y = round.(rand(Float32, N) * 100)
alpha = 2.5

x_device = JACC.Array(x)
y_device = JACC.Array(y)
JACC.parallel_for(N, axpy, alpha, x_device, y_device)
x_device = CuArray(x)
y_device = CuArray(y)
JACC.parallel_for(CUDABackend(), N, axpy, alpha, x_device, y_device)

x_expected = x
seq_axpy(N, alpha, x_expected, y)
Expand Down
12 changes: 6 additions & 6 deletions test/tests_cuda_perf.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,24 +26,24 @@ using Test
end


x_device = CUDA.CuArray(x)
y_device = CUDA.CuArray(y)
x_device = CuArray(x)
y_device = CuArray(y)

for i in 1:11
@time axpy_cuda(N, alpha, x_device, y_device)
end

# JACCCUDA version
# JACCCUDA version
function axpy(i, alpha, x, y)
if i <= length(x)
@inbounds x[i] += alpha * y[i]
end
end

x_device_JACC = JACC.Array(x)
y_device_JACC = JACC.Array(y)
x_device_JACC = CuArray(x)
y_device_JACC = CuArray(y)

for i in 1:11
@time JACC.parallel_for(N, axpy, alpha, x_device_JACC, y_device_JACC)
@time JACC.parallel_for(CUDABackend(), N, axpy, alpha, x_device_JACC, y_device_JACC)
end
end
Loading