Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Aggressive constprop in sparse * dense #460

Merged
merged 3 commits into from
Oct 30, 2023
Merged

Conversation

jishnub
Copy link
Collaborator

@jishnub jishnub commented Oct 17, 2023

Since tA is usually known from the types, this helps eliminate branches. Strangely, Cthulhu suggests that LinearAlgebra.wrap call within spdensemul! is still inferred as a Union, but this doesn't matter much as there's a function barrier.

@codecov
Copy link

codecov bot commented Oct 17, 2023

Codecov Report

Merging #460 (634ff3f) into main (bb86364) will increase coverage by 0.06%.
Report is 2 commits behind head on main.
The diff coverage is 100.00%.

@@            Coverage Diff             @@
##             main     #460      +/-   ##
==========================================
+ Coverage   85.43%   85.50%   +0.06%     
==========================================
  Files          13       13              
  Lines        8733     8773      +40     
==========================================
+ Hits         7461     7501      +40     
  Misses       1272     1272              
Files Coverage Δ
src/linalg.jl 91.55% <100.00%> (ø)
src/sparsematrix.jl 95.75% <100.00%> (+0.06%) ⬆️
src/sparsevector.jl 95.64% <100.00%> (ø)

📣 We’re building smart automated test selection to slash your CI/CD build times. Learn more

@dkarrasch
Copy link
Member

Could you please share some quick piece of code about how you check for elision of branches. I think I tried that with _generic_matmatmul! in LinearAlgebra (the one big BLAS method), but wasn't sure how to see that exactly.

@jishnub
Copy link
Collaborator Author

jishnub commented Oct 17, 2023

I was checking with Cthulhu. On main, using

julia> S = sprand(5, 5, 0.2);

julia> @descend_code_warntype S * ones(size(S,2))

and descending into the spdensemul! call, I see

spdensemul!(C, tA, tB, A, B, _add) @ SparseArrays ~/Dropbox/JuliaPackages/SparseArrays.jl/src/linalg.jl:38
38 function spdensemul!(C::Vector{Float64}, tA::Char, tB::Char, A::SparseMatrixCSC{Float64, Int64}, B::Vector{Float64}, _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool})::Vector{Float64}
39     if tA == 'N'
40         _spmatmul!(C::Vector{Float64}, A::SparseMatrixCSC{Float64, Int64}, LinearAlgebra.wrap(B::Vector{Float64}, tB::Char)::Union{LinearAlgebra.Adjoint{Float64, Vector{Float64}}, LinearAlgebra.Transpose{Float64, Vector{Float64}}, Vector{Float64}}, _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.alpha::Bool, _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.beta::Bool)
41     elseif tA == 'T'
42         _At_or_Ac_mul_B!(transpose, C::Vector{Float64}, A::SparseMatrixCSC{Float64, Int64}, LinearAlgebra.wrap(B::Vector{Float64}, tB::Char)::Union{LinearAlgebra.Adjoint{Float64, Vector{Float64}}, LinearAlgebra.Transpose{Float64, Vector{Float64}}, Vector{Float64}}, _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.alpha::Bool, _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.beta::Bool)
43     elseif tA == 'C'
44         _At_or_Ac_mul_B!(adjoint, C::Vector{Float64}, A::SparseMatrixCSC{Float64, Int64}, LinearAlgebra.wrap(B::Vector{Float64}, tB::Char)::Union{LinearAlgebra.Adjoint{Float64, Vector{Float64}}, LinearAlgebra.Transpose{Float64, Vector{Float64}}, Vector{Float64}}, _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.alpha::Bool, _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.beta::Bool)
45     elseif (tA::Char in ('S', 's', 'H', 'h'))::Bool && tB == 'N'
46         rangefun::Union{typeof(SparseArrays.nzrangelo), typeof(SparseArrays.nzrangeup)} = isuppercase(tA::Char)::Bool ? nzrangeup : nzrangelo
47         diagop::Union{typeof(identity), typeof(real)} = (tA::Char in ('S', 's'))::Bool ? identity : real
48         odiagop::Union{typeof(adjoint), typeof(transpose)} = (tA::Char in ('S', 's'))::Bool ? transpose : adjoint
49         T::Core.Const(Float64) = eltype(C::Vector{Float64})::Type{Float64}
50         _mul!(rangefun::Union{typeof(SparseArrays.nzrangelo), typeof(SparseArrays.nzrangeup)}, diagop::Union{typeof(identity), typeof(real)}, odiagop::Union{typeof(adjoint), typeof(transpose)}, C::Vector{Float64}, A::SparseMatrixCSC{Float64, Int64}, B::Vector{Float64}, T::Type{Float64}(_add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.alpha::Bool)::Float64, T::Type{Float64}(_add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.beta::Bool)::Float64)
51     else
52         LinearAlgebra._generic_matmatmul!(C::Vector{Float64}, 'N', 'N', LinearAlgebra.wrap(A::SparseMatrixCSC{Float64, Int64}, tA::Char)::Union{LinearAlgebra.Adjoint{Float64, SparseMatrixCSC{Float64, Int64}}, LinearAlgebra.Hermitian{Float64, SparseMatrixCSC{Float64, Int64}}, LinearAlgebra.Symmetric{Float64, SparseMatrixCSC{Float64, Int64}}, LinearAlgebra.Transpose{Float64, SparseMatrixCSC{Float64, Int64}}, SparseMatrixCSC{Float64, Int64}}, LinearAlgebra.wrap(B::Vector{Float64}, tB::Char)::Union{LinearAlgebra.Adjoint{Float64, Vector{Float64}}, LinearAlgebra.Transpose{Float64, Vector{Float64}}, Vector{Float64}}, _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool})
53     end
54     return C::Vector{Float64}
55 end
Select a call to descend into or  to ascend. [q]uit. [b]ookmark.
Toggles: [w]arn, [h]ide type-stable statements, [t]ype annotations, [s]yntax highlight for Source/LLVM/Native, [j]ump to source always.
Show: [S]ource code, [A]ST, [T]yped code, [L]LVM IR, [N]ative code
Actions: [E]dit source code, [R]evise and redisplay
 • %5 = ==(::Char,::Char)::Bool
   LinearAlgebra.wrap(B::Vector{Float64}, tB::Char)
   _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.alpha
   _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.beta
   %11 = call  _spmatmul!(,,,,)::Any
   %13 = ==(::Char,::Char)::Bool
   LinearAlgebra.wrap(B::Vector{Float64}, tB::Char)
   _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.alpha
   _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.beta
v  %20 = call  _At_or_Ac_mul_B!(,,,,,)::Any

whereas, on this PR, I obtain

spdensemul!(C, tA, tB, A, B, _add) @ SparseArrays ~/Dropbox/JuliaPackages/SparseArrays.jl/src/linalg.jl:38
┌ Warning: Some line information is missing, type-assignment may be incomplete
└ @ Cthulhu ~/.julia/packages/Cthulhu/9kV71/src/codeview.jl:144
38 function spdensemul!(C::Vector{Float64}, tA::Char, tB::Char, A::SparseMatrixCSC{Float64, Int64}, B::Vector{Float64}, _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool})::Vector{Float64}
39     if tA == 'N'
40         _spmatmul!(C::Vector{Float64}, A::SparseMatrixCSC{Float64, Int64}, LinearAlgebra.wrap(B::Vector{Float64}, tB::Char)::Union{LinearAlgebra.Adjoint{Float64, Vector{Float64}}, LinearAlgebra.Transpose{Float64, Vector{Float64}}, Vector{Float64}}, _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.alpha::Bool, _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.beta::Bool)
41     elseif tA == 'T'
42         _At_or_Ac_mul_B!(transpose, C, A, LinearAlgebra.wrap(B, tB), _add.alpha, _add.beta)
43     elseif tA == 'C'
44         _At_or_Ac_mul_B!(adjoint, C, A, LinearAlgebra.wrap(B, tB), _add.alpha, _add.beta)
45     elseif tA in ('S', 's', 'H', 'h') && tB == 'N'
46         rangefun = isuppercase(tA) ? nzrangeup : nzrangelo
47         diagop = tA in ('S', 's') ? identity : real
48         odiagop = tA in ('S', 's') ? transpose : adjoint
49         T = eltype(C)
50         _mul!(rangefun, diagop, odiagop, C, A, B, T(_add.alpha), T(_add.beta))
51     else
52         LinearAlgebra._generic_matmatmul!(C, 'N', 'N', LinearAlgebra.wrap(A, tA), LinearAlgebra.wrap(B, tB), _add)
53     end
54     return C::Vector{Float64}
55 end
Select a call to descend into or  to ascend. [q]uit. [b]ookmark.
Toggles: [w]arn, [h]ide type-stable statements, [t]ype annotations, [s]yntax highlight for Source/LLVM/Native, [j]ump to source always.
Show: [S]ource code, [A]ST, [T]yped code, [L]LVM IR, [N]ative code
Actions: [E]dit source code, [R]evise and redisplay
 • %6 = < concrete eval > ==(::Core.Const('N'),::Core.Const('N'))::Core.Const(true)
   LinearAlgebra.wrap(B::Vector{Float64}, tB::Char)
   _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.alpha
   _add::LinearAlgebra.MulAddMul{true, true, Bool, Bool}.beta
   %12 = call  _spmatmul!(,,,,)::Any
   

This indicates that only one branch (the tA == 'N' one) is being inferred, as the equality check is evaluated at compile time.

@jishnub
Copy link
Collaborator Author

jishnub commented Oct 26, 2023

Should we go ahead with this?

@dkarrasch
Copy link
Member

I'd say yes! Do you think there could be any benefit from adding those macros to the _generic_mat***mul! in LinearAlgebra? See JuliaLang/julia#51812 for some interesting discussion.

@dkarrasch
Copy link
Member

I think we should even backport this to v1.10... Opinions? Objections?

@dkarrasch dkarrasch merged commit 81fc6f3 into main Oct 30, 2023
8 checks passed
@dkarrasch dkarrasch deleted the jishnub/constpropdensemul branch October 30, 2023 10:55
ViralBShah added a commit that referenced this pull request Oct 30, 2023
Aggressive constprop in sparse * dense (#460)

Co-authored-by: Jishnu Bhattacharya <jishnub.github@gmail.com>
Co-authored-by: Viral B. Shah <ViralBShah@users.noreply.github.com>
@PallHaraldsson
Copy link
Contributor

PallHaraldsson commented Nov 5, 2023

This was backported here to release-1.10, but not to JuliaLang? I'm just trying to understand, I think it's not in1.10-rc1, and I think at least this line needs changing:

https://github.com/JuliaLang/julia/blob/5aaa94854367ca875375e38ae14f369f124e7315/stdlib/SparseArrays.version#L2

@dkarrasch
Copy link
Member

Yes, likely this needs to be bumped on the release-1.10 branch there.

@ViralBShah
Copy link
Member

I think @KristofferC may not want this in 1.10.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants