-
Notifications
You must be signed in to change notification settings - Fork 419
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #304 from JuliaStats/dh/wishart2
Reimplement Wishart and InverseWishart: allow the use of general pdmats as arguments
- Loading branch information
Showing
6 changed files
with
176 additions
and
179 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,103 +1,85 @@ | ||
############################################################################## | ||
# Inverse Wishart distribution | ||
# | ||
# Inverse Wishart Distribution | ||
# following Wikipedia parametrization | ||
# | ||
# Parameterized such that E(X) = Psi / (nu - p - 1) | ||
# See the riwish and diwish function of R's MCMCpack | ||
# | ||
############################################################################## | ||
|
||
immutable InverseWishart <: ContinuousMatrixDistribution | ||
nu::Float64 | ||
Psichol::Cholesky{Float64} | ||
function InverseWishart(n::Real, Pc::Cholesky{Float64}) | ||
if n > size(Pc, 1) - 1 | ||
new(float64(n), Pc) | ||
else | ||
error("Inverse Wishart parameters must be df > p - 1") | ||
end | ||
end | ||
end | ||
|
||
dim(d::InverseWishart) = size(d.Psichol, 1) | ||
size(d::InverseWishart) = size(d.Psichol) | ||
immutable InverseWishart{ST<:AbstractPDMat} <: ContinuousMatrixDistribution | ||
df::Float64 # degree of freedom | ||
Ψ::ST # scale matrix | ||
c0::Float64 # log of normalizing constant | ||
end | ||
|
||
show(io::IO, d::InverseWishart) = show_multline(io, d, [(:nu, d.nu), (:Psi, full(d.Psichol))]) | ||
#### Constructors | ||
|
||
function InverseWishart(nu::Real, Psi::Matrix{Float64}) | ||
InverseWishart(float64(nu), cholfact(Psi)) | ||
function InverseWishart{ST<:AbstractPDMat}(df::Real, Ψ::ST) | ||
p = dim(Ψ) | ||
df > p - 1 || error("df should be greater than dim - 1.") | ||
InverseWishart{ST}(df, Ψ, _invwishart_c0(df, Ψ)) | ||
end | ||
|
||
function insupport(IW::InverseWishart, X::Matrix{Float64}) | ||
return size(X) == size(IW) && isApproxSymmmetric(X) && hasCholesky(X) | ||
end | ||
# This just checks if X could come from any Inverse-Wishart | ||
function insupport(::Type{InverseWishart}, X::Matrix{Float64}) | ||
return size(X, 1) == size(X, 2) && isApproxSymmmetric(X) && hasCholesky(X) | ||
end | ||
InverseWishart(df::Real, Ψ::Matrix{Float64}) = InverseWishart(df, PDMat(Ψ)) | ||
|
||
function mean(IW::InverseWishart) | ||
if IW.nu > size(IW.Psichol, 1) + 1 | ||
return 1.0 / (IW.nu - size(IW.Psichol, 1) - 1.0) * | ||
(IW.Psichol[:U]' * IW.Psichol[:U]) | ||
else | ||
error("mean only defined for nu > p + 1") | ||
end | ||
InverseWishart(df::Real, Ψ::Cholesky) = InverseWishart(df, PDMat(Ψ)) | ||
|
||
function _invwishart_c0(df::Float64, Ψ::AbstractPDMat) | ||
h_df = df / 2 | ||
p = dim(Ψ) | ||
h_df * (p * logtwo - logdet(Ψ)) + lpgamma(p, h_df) | ||
end | ||
|
||
function _logpdf{T<:Real}(IW::InverseWishart, X::DenseMatrix{T}) | ||
Xchol = trycholfact(X) | ||
if size(X) == size(IW) && isApproxSymmmetric(X) && isa(Xchol, Cholesky) | ||
p = size(X, 1) | ||
logd::Float64 = IW.nu * p / 2.0 * log(2.0) | ||
logd += lpgamma(p, IW.nu / 2.0) | ||
logd -= IW.nu / 2.0 * logdet(IW.Psichol) | ||
logd = -logd | ||
logd -= 0.5 * (IW.nu + p + 1.0) * logdet(Xchol) | ||
logd -= 0.5 * trace(inv(Xchol) * (IW.Psichol[:U]' * IW.Psichol[:U])) | ||
return logd | ||
|
||
#### Properties | ||
|
||
insupport(::Type{InverseWishart}, X::Matrix{Float64}) = isposdef(X) | ||
insupport(d::InverseWishart, X::Matrix{Float64}) = size(X) == size(d) && isposdef(X) | ||
|
||
dim(d::InverseWishart) = dim(d.Ψ) | ||
size(d::InverseWishart) = (p = dim(d); (p, p)) | ||
|
||
|
||
#### Show | ||
|
||
show(io::IO, d::InverseWishart) = show_multline(io, d, [(:df, d.df), (:Ψ, full(d.Ψ))]) | ||
|
||
|
||
#### Statistics | ||
|
||
function mean(d::InverseWishart) | ||
df = d.df | ||
p = dim(d) | ||
r = df - (p + 1) | ||
if r > 0.0 | ||
return full(d.Ψ) * (1.0 / r) | ||
else | ||
return -Inf | ||
error("mean only defined for df > p + 1") | ||
end | ||
end | ||
|
||
# rand(Wishart(nu, Psi^-1))^-1 is an sample from an | ||
# inverse wishart(nu, Psi). there is actually some wacky | ||
# behavior here where inv of the Cholesky returns the | ||
# inverse of the original matrix, in this case we're getting | ||
# Psi^-1 like we want | ||
rand(IW::InverseWishart) = inv(rand(Wishart(IW.nu, inv(IW.Psichol)))) | ||
|
||
function rand!(IW::InverseWishart, X::Array{Matrix{Float64}}) | ||
Psiinv = inv(IW.Psichol) | ||
W = Wishart(IW.nu, Psiinv) | ||
X = rand!(W, X) | ||
for i in 1:length(X) | ||
X[i] = inv(X[i]) | ||
end | ||
return X | ||
end | ||
mode(d::InverseWishart) = d.Ψ * inv(d.df + dim(d) + 1.0) | ||
|
||
var(IW::InverseWishart) = error("Not yet implemented") | ||
|
||
# because X == X' keeps failing due to floating point nonsense | ||
function isApproxSymmmetric(a::Matrix{Float64}) | ||
tmp = true | ||
for j in 2:size(a, 1) | ||
for i in 1:(j - 1) | ||
tmp &= abs(a[i, j] - a[j, i]) < 1e-8 | ||
end | ||
end | ||
return tmp | ||
#### Evaluation | ||
|
||
function _logpdf(d::InverseWishart, X::DenseMatrix{Float64}) | ||
p = dim(d) | ||
df = d.df | ||
Xcf = cholfact(X) | ||
# we use the fact: trace(Ψ * inv(X)) = trace(inv(X) * Ψ) = trace(X \ Ψ) | ||
Ψ = full(d.Ψ) | ||
-0.5 * ((df + p + 1) * logdet(Xcf) + trace(Xcf \ Ψ)) - d.c0 | ||
end | ||
|
||
# because isposdef keeps giving the wrong answer for samples | ||
# from Wishart and InverseWisharts | ||
hasCholesky(a::Matrix{Float64}) = isa(trycholfact(a), Cholesky) | ||
_logpdf{T<:Real}(d::InverseWishart, X::DenseMatrix{T}) = _logpdf(d, float64(X)) | ||
|
||
|
||
#### Sampling | ||
|
||
function trycholfact(a::Matrix{Float64}) | ||
try cholfact(a) | ||
catch e | ||
return e | ||
rand(d::InverseWishart) = inv(rand(Wishart(d.df, inv(d.Ψ)))) | ||
|
||
function _rand!{M<:Matrix}(d::InverseWishart, X::AbstractArray{M}) | ||
wd = Wishart(d.df, inv(d.Ψ)) | ||
for i in 1:length(X) | ||
X[i] = inv(rand(wd)) | ||
end | ||
return X | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,96 +1,109 @@ | ||
############################################################################## | ||
# Wishart distribution | ||
# | ||
# Wishart Distribution | ||
# following the Wikipedia parameterization | ||
# | ||
# Parameters nu and S such that E(X) = nu * S | ||
# See the rwish and dwish implementation in R's MCMCPack | ||
# This parametrization differs from Bernardo & Smith p 435 | ||
# in this way: (nu, S) = (2.0 * alpha, 0.5 * beta^-1) | ||
# | ||
############################################################################## | ||
|
||
immutable Wishart <: ContinuousMatrixDistribution | ||
nu::Float64 | ||
Schol::Cholesky{Float64} | ||
function Wishart(n::Real, Sc::Cholesky{Float64}) | ||
if n > size(Sc, 1) - 1 | ||
new(float64(n), Sc) | ||
else | ||
error("Wishart parameters must be df > p - 1") | ||
end | ||
end | ||
|
||
immutable Wishart{ST<:AbstractPDMat} <: ContinuousMatrixDistribution | ||
df::Float64 # degree of freedom | ||
S::ST # the scale matrix | ||
c0::Float64 # the logarithm of normalizing constant in pdf | ||
end | ||
|
||
Wishart(nu::Real, S::Matrix{Float64}) = Wishart(nu, cholfact(S)) | ||
#### Constructors | ||
|
||
show(io::IO, d::Wishart) = show_multline(io, d, [(:nu, d.nu), (:S, full(d.Schol))]) | ||
function Wishart{ST<:AbstractPDMat}(df::Real, S::ST) | ||
p = dim(S) | ||
df > p - 1 || error("df should be greater than dim - 1.") | ||
Wishart{ST}(df, S, _wishart_c0(df, S)) | ||
end | ||
|
||
Wishart(df::Real, S::Matrix{Float64}) = Wishart(df, PDMat(S)) | ||
|
||
dim(W::Wishart) = size(W.Schol, 1) | ||
size(W::Wishart) = size(W.Schol) | ||
Wishart(df::Real, S::Cholesky) = Wishart(df, PDMat(S)) | ||
|
||
function insupport(W::Wishart, X::Matrix{Float64}) | ||
return size(X) == size(W) && isApproxSymmmetric(X) && hasCholesky(X) | ||
end | ||
# This just checks if X could come from any Wishart | ||
function insupport(::Type{Wishart}, X::Matrix{Float64}) | ||
return size(X, 1) == size(X, 2) && isApproxSymmmetric(X) && hasCholesky(X) | ||
function _wishart_c0(df::Float64, S::AbstractPDMat) | ||
h_df = df / 2 | ||
p = dim(S) | ||
h_df * (logdet(S) + p * logtwo) + lpgamma(p, h_df) | ||
end | ||
|
||
mean(w::Wishart) = w.nu * (w.Schol[:U]' * w.Schol[:U]) | ||
|
||
function expected_logdet(W::Wishart) | ||
logd = 0. | ||
d = dim(W) | ||
#### Properties | ||
|
||
for i=1:d | ||
logd += digamma(0.5 * (W.nu + 1 - i)) | ||
end | ||
insupport(::Type{Wishart}, X::Matrix{Float64}) = isposdef(X) | ||
insupport(d::Wishart, X::Matrix{Float64}) = size(X) == size(d) && isposdef(X) | ||
|
||
logd += d * log(2) | ||
logd += logdet(W.Schol) | ||
dim(d::Wishart) = dim(d.S) | ||
size(d::Wishart) = (p = dim(d); (p, p)) | ||
|
||
return logd | ||
end | ||
|
||
function lognorm(W::Wishart) | ||
d = dim(W) | ||
return (W.nu / 2) * logdet(W.Schol) + (d * W.nu / 2) * log(2) + lpgamma(d, W.nu / 2) | ||
end | ||
#### Show | ||
|
||
show(io::IO, d::Wishart) = show_multline(io, d, [(:df, d.df), (:S, full(d.S))]) | ||
|
||
|
||
#### Statistics | ||
|
||
mean(d::Wishart) = d.df * full(d.S) | ||
|
||
function _logpdf{T<:Real}(W::Wishart, X::DenseMatrix{T}) | ||
Xchol = trycholfact(X) | ||
if size(X) == size(W) && isApproxSymmmetric(X) && isa(Xchol, Cholesky) | ||
d = dim(W) | ||
logd = -lognorm(W) | ||
logd += 0.5 * (W.nu - d - 1.0) * logdet(Xchol) | ||
logd -= 0.5 * trace(W.Schol \ X) | ||
return logd | ||
function mode(d::Wishart) | ||
r = d.df - dim(d) - 1.0 | ||
if r > 0.0 | ||
return full(d.S) * r | ||
else | ||
return -Inf | ||
error("mode is only defined when df > p + 1") | ||
end | ||
end | ||
|
||
function rand(w::Wishart) | ||
p = size(w.Schol, 1) | ||
X = zeros(p, p) | ||
for ii in 1:p | ||
X[ii, ii] = sqrt(rand(Chisq(w.nu - ii + 1))) | ||
function meanlogdet(d::Wishart) | ||
p = dim(d) | ||
df = d.df | ||
v = logdet(d.S) + p * logtwo | ||
for i = 1:p | ||
v += digamma(0.5 * (df - (i - 1))) | ||
end | ||
if p > 1 | ||
for col in 2:p | ||
for row in 1:(col - 1) | ||
X[row, col] = randn() | ||
end | ||
end | ||
end | ||
Z = X * w.Schol[:U] | ||
return At_mul_B(Z, Z) | ||
return v | ||
end | ||
|
||
function entropy(d::Wishart) | ||
p = dim(d) | ||
df = d.df | ||
d.c0 - 0.5 * (df - p - 1) * meanlogdet(d) + 0.5 * df * p | ||
end | ||
|
||
|
||
#### Evaluation | ||
|
||
function _logpdf(d::Wishart, X::DenseMatrix{Float64}) | ||
df = d.df | ||
p = dim(d) | ||
Xcf = cholfact(X) | ||
0.5 * ((df - (p + 1)) * logdet(Xcf) - trace(d.S \ X)) - d.c0 | ||
end | ||
|
||
function entropy(W::Wishart) | ||
d = dim(W) | ||
return lognorm(W) - (W.nu - d - 1) / 2 * expected_logdet(W) + W.nu * d / 2 | ||
_logpdf{T<:Real}(d::Wishart, X::DenseMatrix{T}) = _logpdf(d, float64(X)) | ||
|
||
#### Sampling | ||
|
||
function rand(d::Wishart) | ||
Z = unwhiten!(d.S, _wishart_genA(dim(d), d.df)) | ||
A_mul_Bt(Z, Z) | ||
end | ||
|
||
var(w::Wishart) = error("Not yet implemented") | ||
function _wishart_genA(p::Int, df::Float64) | ||
# Generate the matrix A in the Bartlett decomposition | ||
# | ||
# A is a lower triangular matrix, with | ||
# | ||
# A(i, j) ~ sqrt of Chisq(df - i + 1) when i == j | ||
# ~ Normal() when i > j | ||
# | ||
A = zeros(p, p) | ||
for i = 1:p | ||
@inbounds A[i,i] = sqrt(rand(Chisq(df - i + 1.0))) | ||
end | ||
for j = 1:p-1, i = j+1:p | ||
@inbounds A[i,j] = randn() | ||
end | ||
return A | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.