Skip to content

A PyTorch implementation of " AN EMPIRICAL STUDY OF CONV-TASNET "

Notifications You must be signed in to change notification settings

JusperLee/Deep-Encoder-Decoder-Conv-TasNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

A PyTorch implementation of "An Empirical study of Conv-TasNet"

Conv-Tasnet(Deep w / dilation)

Encoder:
    Conv1D(1, N, kernel_size, stride=stride)
    Conv1D(N, N, kernel_size=3, stride=1, dilation=1,padding=1)
    Conv1D(N, N, kernel_size=3, stride=1, dilation=2, padding=2)
    Conv1D(N, N, kernel_size=3, stride=1, dilation=4, padding=4)
    Conv1D(N, N, kernel_size=3, stride=1, dilation=8, padding=8)

Decoder:
    nn.ConvTranspose1d(N, N, kernel_size=3, stride=1, dilation=8, padding=8)
    nn.ConvTranspose1d(N, N, kernel_size=3, stride=1, dilation=4, padding=4)
    nn.ConvTranspose1d(N, N, kernel_size=3, stride=1, dilation=2, padding=2)
    nn.ConvTranspose1d(N, N, kernel_size=3, stride=1, dilation=1, padding=1)
    nn.ConvTranspose1d(N, 1, kernel_size=kernel_size, stride=stride)

Conv-Tasnet(Deep w / PRelu)

Encoder:
    Conv1D(1, N, kernel_size, stride=stride)
    Conv1D(N, N, kernel_size=3, stride=1,padding=1)
    Conv1D(N, N, kernel_size=3, stride=1, padding=1)
    Conv1D(N, N, kernel_size=3, stride=1, padding=1)
    Conv1D(N, N, kernel_size=3, stride=1, padding=1)

Decoder:
    nn.ConvTranspose1d(N, N, kernel_size=3, stride=1, padding=1)
    nn.ConvTranspose1d(N, N, kernel_size=3, stride=1, padding=1)
    nn.ConvTranspose1d(N, N, kernel_size=3, stride=1, padding=1)
    nn.ConvTranspose1d(N, N, kernel_size=3, stride=1, padding=1)
    nn.ConvTranspose1d(N, 1, kernel_size=kernel_size, stride=stride)

How to use

You can replace the Conv_TasNet.py file in the Conv-TasNet repository for training.

Result

Conv-Tasnet(Deep w / dilation): SI-SNRi:16.346, SDRi:16.61

Reference

[1]. Kadioglu B, Horgan M, Liu X, et al. An empirical study of Conv-TasNet[J]. arXiv preprint arXiv:2002.08688, 2020.

About

A PyTorch implementation of " AN EMPIRICAL STUDY OF CONV-TASNET "

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages