The source code of paper "Translating Embedding with Local Connection for Knowledge Graph Completion".
Link prediction on FB15k-237:
Raw MRR | Filter MRR | Hits@1 | Hits@3 | Hits@10 | |
---|---|---|---|---|---|
unif | 0.227 | 0.342 | 0.244 | 0.379 | 0.535 |
bern | 0.248 | 0.355 | 0.260 | 0.389 | 0.551 |
Triplet classification on WN11 and FB13:
WN11 | FB13 | |
---|---|---|
unif | 0.861 | 0.838 |
bern | 0.866 | 0.856 |
We provide FB15k-237, FB13 and WN11 datasets used for the tasks of link prediction and triplet classification.
Each dataset in the following format, containing five files:
- entity2id.txt: all entities and corresponding ids, format (entity, id)
- relation2id.txt: all relations and corresponding ids, format (relation, id)
- test.txt: testing file, format (head_entity, relation, tail_entity, label)
- train.txt: training file, format (head_entity, relation, tail_entity)
- valid.txt: validation file, format (head_entity, relation, tail_entity, label)
Usage:
python code/train.py
You can change the hyper-parameters.
-dim: entity and relation sharing embedding dimension
-margin_pos: margin of positive triplets
-margin_neg: margin of negative triplets
-rate: learning rate
-batch: batch size
-epoch: number of training epoch
-method: stratege of constructing negative triplets, options: unif, bern
-data: dataset of the model, options: FB15k-237, WN11, FB13
Usage: Link prediction:
python code/test-lp.py
Triplet classification:
python code/test-tc.py
You can change the hyper-parameters.
-dim: entity and relation sharing embedding dimension
-margin_pos: margin of positive triplets
-margin_neg: margin of negative triplets
-rate: learning rate
-batch: batch size
-epoch: number of training epoch
-method: stratege of constructing negative triplets, options: unif, bern
-data: dataset of the model, options: FB15k-237, WN11, FB13
It will evaluate on test.txt and report the results.