Skip to content

KGCompletion/TransL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TransL

The source code of paper "Translating Embedding with Local Connection for Knowledge Graph Completion".

Link prediction on FB15k-237:

Raw MRR Filter MRR Hits@1 Hits@3 Hits@10
unif 0.227 0.342 0.244 0.379 0.535
bern 0.248 0.355 0.260 0.389 0.551

Triplet classification on WN11 and FB13:

WN11 FB13
unif 0.861 0.838
bern 0.866 0.856

Data

We provide FB15k-237, FB13 and WN11 datasets used for the tasks of link prediction and triplet classification.
Each dataset in the following format, containing five files:

  • entity2id.txt: all entities and corresponding ids, format (entity, id)
  • relation2id.txt: all relations and corresponding ids, format (relation, id)
  • test.txt: testing file, format (head_entity, relation, tail_entity, label)
  • train.txt: training file, format (head_entity, relation, tail_entity)
  • valid.txt: validation file, format (head_entity, relation, tail_entity, label)

Training

Usage:

python code/train.py

You can change the hyper-parameters.
-dim: entity and relation sharing embedding dimension
-margin_pos: margin of positive triplets
-margin_neg: margin of negative triplets
-rate: learning rate
-batch: batch size
-epoch: number of training epoch
-method: stratege of constructing negative triplets, options: unif, bern
-data: dataset of the model, options: FB15k-237, WN11, FB13

Testing

Usage: Link prediction:

python code/test-lp.py

Triplet classification:

python code/test-tc.py

You can change the hyper-parameters.
-dim: entity and relation sharing embedding dimension
-margin_pos: margin of positive triplets
-margin_neg: margin of negative triplets
-rate: learning rate
-batch: batch size
-epoch: number of training epoch
-method: stratege of constructing negative triplets, options: unif, bern
-data: dataset of the model, options: FB15k-237, WN11, FB13

It will evaluate on test.txt and report the results.

About

No description or website provided.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages