基于pytorch的yolov3
** train your own datase
** --data-cfg='cfg/my.coco
** change data/coco.names
** --coco=False
** Two style:** 1:coco style(class x y w h) xywh is Normalized
** 2:my dataset style(class x1 y1 x2 y2) xyxy is pixel
** if your dataset like coco style,please set --coco=True
** if set your own dataset,please set --coco=False
Start Training: Run train.py
to begin training after downloading COCO data with data/get_coco_dataset.sh
.
Run detect.py
to apply trained weights to an image, such as zidane.jpg
from the data/samples
folder:
YOLOv3: detect.py --cfg cfg/yolov3.cfg --weights weights/yolov3.pt
YOLOv3-tiny: detect.py --cfg cfg/yolov3-tiny.cfg --weights weights/yolov3-tiny.pt
Run detect.py
with webcam=True
to show a live webcam feed.
- Darknet
*.weights
format: https://pjreddie.com/media/files/yolov3.weights - PyTorch
*.pt
format: https://drive.google.com/drive/folders/1uxgUBemJVw9wZsdpboYbzUN4bcRhsuAI