Skip to content

Commit

Permalink
Objects365 Dataset (ultralytics#2932)
Browse files Browse the repository at this point in the history
* add object365

* ADD CONVERSION SCRIPT

* fix transcript

* Reformat and simplify

* spelling

* Update get_objects365.py

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
  • Loading branch information
ferdinandl007 and glenn-jocher authored Apr 29, 2021
1 parent 8c0dee8 commit 5d95088
Show file tree
Hide file tree
Showing 4 changed files with 120 additions and 3 deletions.
28 changes: 28 additions & 0 deletions data/hyp.finetune_objects365.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
lr0: 0.00258
lrf: 0.17
momentum: 0.779
weight_decay: 0.00058
warmup_epochs: 1.33
warmup_momentum: 0.86
warmup_bias_lr: 0.0711
box: 0.0539
cls: 0.299
cls_pw: 0.825
obj: 0.632
obj_pw: 1.0
iou_t: 0.2
anchor_t: 3.44
anchors: 3.2
fl_gamma: 0.0
hsv_h: 0.0188
hsv_s: 0.704
hsv_v: 0.36
degrees: 0.0
translate: 0.0902
scale: 0.491
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
mosaic: 1.0
mixup: 0.0
57 changes: 57 additions & 0 deletions data/objects365.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
# Objects365 dataset https://www.objects365.org/
# Train command: python train.py --data objects365.yaml
# Default dataset location is next to YOLOv5:
# /parent_folder
# /datasets/objects365
# /yolov5

# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../datasets/objects365/images/train # 1.7 Million images
val: ../datasets/objects365/images/val # 5570 images

# number of classes
nc: 365

# class names
names: [ 'Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle',
'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird',
'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck',
'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning',
'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife',
'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock',
'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish',
'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan',
'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard',
'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign',
'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat',
'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard',
'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry',
'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks',
'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors',
'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape',
'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck',
'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette',
'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket',
'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine',
'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine',
'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon',
'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse',
'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball',
'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin',
'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts',
'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit',
'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD',
'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder',
'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips',
'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab',
'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal',
'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart',
'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis' ]

5 changes: 2 additions & 3 deletions data/scripts/get_argoverse_hd.sh
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ for val in annotation_files:
img_name = a['images'][img_id]['name']
img_label_name = img_name[:-3] + "txt"
obj_class = annot['category_id']
cls = annot['category_id'] # instance class id
x_center, y_center, width, height = annot['bbox']
x_center = (x_center + width / 2) / 1920. # offset and scale
y_center = (y_center + height / 2) / 1200. # offset and scale
Expand All @@ -46,11 +46,10 @@ for val in annotation_files:
img_dir = "./labels/" + a['seq_dirs'][a['images'][annot['image_id']]['sid']]
Path(img_dir).mkdir(parents=True, exist_ok=True)
if img_dir + "/" + img_label_name not in label_dict:
label_dict[img_dir + "/" + img_label_name] = []
label_dict[img_dir + "/" + img_label_name].append(f"{obj_class} {x_center} {y_center} {width} {height}\n")
label_dict[img_dir + "/" + img_label_name].append(f"{cls} {x_center} {y_center} {width} {height}\n")
for filename in label_dict:
with open(filename, "w") as file:
Expand Down
33 changes: 33 additions & 0 deletions data/scripts/get_objects365.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
# Objects365 https://www.objects365.org labels JSON to YOLO script
# 1. Download Object 365 from the Object 365 website And unpack all images in datasets/object365/images
# 2. Place this file and zhiyuan_objv2_train.json file in datasets/objects365
# 3. Execute this file from datasets/object365 path
# /datasets
# /objects365
# /images
# /labels

from pycocotools.coco import COCO

coco = COCO("zhiyuan_objv2_train.json")
cats = coco.loadCats(coco.getCatIds())
nms = [cat["name"] for cat in cats]
print("COCO categories: \n{}\n".format(" ".join(nms)))
for categoryId, cat in enumerate(nms):
catIds = coco.getCatIds(catNms=[cat])
imgIds = coco.getImgIds(catIds=catIds)
print(cat)
# Create a subfolder in this directory called "labels". This is where the annotations will be saved in YOLO format
for im in coco.loadImgs(imgIds):
width, height = im["width"], im["height"]
path = im["file_name"].split("/")[-1] # image filename
try:
with open("labels/train/" + path.replace(".jpg", ".txt"), "a+") as file:
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
for a in coco.loadAnns(annIds):
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
x, y = x + w / 2, y + h / 2 # xy to center
file.write(f"{categoryId} {x / width:.5f} {y / height:.5f} {w / width:.5f} {h / height:.5f}\n")

except Exception as e:
print(e)

0 comments on commit 5d95088

Please sign in to comment.