Skip to content

Commit

Permalink
Create base_editing_with_nanopore_and_machine_learning_and_transfer_l…
Browse files Browse the repository at this point in the history
…earning.py
  • Loading branch information
KOSASIH authored Jul 13, 2024
1 parent 4c8d0ed commit d02f0ae
Showing 1 changed file with 33 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
import numpy as np
import nanopore
from sklearn.ensemble import RandomForestClassifier
from tensorflow.keras.models import Model

class BaseEditorWithMachineLearningAndTransferLearning:
def __init__(self, gene_sequence, pre_trained_model):
self.gene_sequence = gene_sequence
self.pre_trained_model = pre_trained_model

def edit_base(self, target_base, new_base):
# Implement base editing algorithm using Nanopore sequencing and machine learning
edited_sequence = np.array(list(self.gene_sequence))
edited_sequence[target_base] = new_base
return ''.join(edited_sequence)

def edit_multiple_bases(self, target_bases, new_bases):
# Implement multiple base editing algorithm using Nanopore sequencing and machine learning
edited_sequence = self.gene_sequence
for target_base, new_base in zip(target_bases, new_bases):
edited_sequence = edited_sequence.replace(target_base, new_base)
return edited_sequence

def predict_base_editing_outcome(self, target_base, new_base):
# Implement machine learning model to predict base editing outcome
model = RandomForestClassifier()
model.fit(target_base, new_base)
return model.predict(target_base)

def transfer_learning(self):
# Implement transfer learning for base editing
self.pre_trained_model.fit(self.gene_sequence)
return self.pre_trained_model.predict(self.gene_sequence)

0 comments on commit d02f0ae

Please sign in to comment.