Skip to content

KXY-PUBLIC/NASE

Repository files navigation

NASE

Codes for our CIKM 2020 paper NASE: Learning Knowledge Graph Embedding for Link Prediction via Neural Architecture Search.
Xiaoyu Kou, Bingfeng Luo, Huang Hu, Yan Zhang.

Prerequisites

  • Linux
  • Python 3.6
  • PyTorch >= 1.2.0
  • numpy: 1.18.5

Note: This code framework is based on Paper Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs

Getting Started

Installation

Clone this repo.

git clone https://github.com/KXY-PUBLIC/NASE.git
cd NASE

Please install dependencies by

pip install -r requirements.txt

Dataset

  • FB15K-237 and WN18RR are two well-known KG benchmark datasets.
  • Medical-E, Medical-C and Military are three less common datasets to better compare the dataset adaptation ability of each system.

Searching Examples:

For example, searching on FB15k-237 datasets:

mkdir log/
CUDA_VISIBLE_DEVICES=0 nohup python -u search.py --dataset=FB15k-237  --epochs=800 --model_name=NASE --layers=1 --do_margin_loss=1 --embedding_size=200 &> log/search_NASE_fb.out &

Searching on Medical-E datasets:

CUDA_VISIBLE_DEVICES=0 nohup python -u search.py --dataset=Medical-E  --epochs=800 --model_name=NASE --layers=2 --do_margin_loss=1 --embedding_size=100 &> log/search_NASE_Medical-E.out &

Training Examples:

For example, training on FB15k-237 datasets:

CUDA_VISIBLE_DEVICES=0 nohup python -u train.py --dataset=FB15k-237  --epochs=1000 --model_name=NASE --arch=arc_1 --lr=1e-3 --embedding_size=400 &> log/NASE_FB15k-237_arc_1.out &

Training on WN18RR datasets:

CUDA_VISIBLE_DEVICES=0 nohup python -u train.py --dataset=WN18RR  --epochs=1000 --model_name=NASE --arch=arc_2 --lr=1e-2 --embedding_size=200 &> log/NASE_WN18RR_arc_2.out &

Training on Medical-E datasets:

CUDA_VISIBLE_DEVICES=0 nohup python -u train.py --dataset=Medical-E  --epochs=1000 --model_name=NASE --arch=arc_3 --lr=1e-2 --embedding_size=200 &> log/NASE_Medical-E_arc_3.out &

Training on Medical-C datasets:

CUDA_VISIBLE_DEVICES=0 nohup python -u train.py --dataset=Medical-C  --epochs=1000 --model_name=NASE --arch=arc_1 --lr=1e-2 --embedding_size=200 &> log/NASE_Medical-C_arc_1.out &

Training on Military datasets:

CUDA_VISIBLE_DEVICES=0 nohup python -u train.py --dataset=Military  --epochs=1000 --model_name=NASE --arch=arc_2 --lr=1e-2 --embedding_size=200 &> log/NASE_Military_arc_2.out &

Cite

Please cite our paper if you use this code in your own work:

@inproceedings{kou2020nase,
  title={NASE: Learning Knowledge Graph Embedding for Link Prediction via Neural Architecture Search},
  author={Kou, Xiaoyu and Luo, Bingfeng and Hu, Huang and Zhang, Yan},
  booktitle={Proceedings of the 29th ACM International Conference on Information \& Knowledge Management},
  pages={2089--2092},
  year={2020}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages