conda install -c intel scikit-learn pandas
Directory for saving and unloading datasets while the benchmark is running
```bash
export DATASETSROOT=<enter absolute path>
python workloads/load_datasets.py
For runs all workloads:
python benchmarks/svm_workload_run.py
For runs of the selected workload:
python benchmarks/svm_workload_run.py --workload a9a
You can choose library: sklearn
, cuml
, thundersvm
, idp_sklearn
For runs of the selected library.
By default using sklearn with oneDAL optimizations (idp_sklearn
).
Example for thundersvm library:
python benchmarks/svm_workload_run.py --library thundersvm
NOTE: for thundersvm/cuml runs need thundersvm/cuml library. Can you download with help pip or conda