Skip to content

KamitaniLab/feature-decoding

Repository files navigation

Feature decoding

This repository provides scripts of deep neural network (DNN) feature decoding from fMRI brain activities, originally proposed by Horikawa & Kamitani (2017) and employed in DNN-based image reconstruction methods of Shen et al. (2019) as well as recent studies in Kamitani lab.

Usage

Environment setup

Please setup Python environment where packages in requirements.txt are installed.

# Using venv
$ python -m venv .venv
$ . .venv/bin/activate
$ pip install -r requirements.txt

Data setup

TBA

Decoding with PyFastL2LiR

# Training of decoding models
$ python train_decoder_fastl2lir.py config/deeprecon_pyfastl2lir_alpha100_vgg19_allunits.yaml

# Prediction of DNN features
$ python predict_feature_fastl2lir.py config/deeprecon_pyfastl2lir_alpha100_vgg19_allunits.yaml

# Evaluation
$ python evaluation.py config/deeprecon_pyfastl2lir_alpha100_vgg19_allunits.yaml

Decoding with generic regression models

# Training of decoding models
$ python train_decoder_sklearn_ridge.py config/deeprecon_pyfastl2lir_alpha100_vgg19_allunits.yaml

# Prediction of DNN features
$ python preeict_feature.py config/deeprecon_pyfastl2lir_alpha100_vgg19_allunits.yaml

# Evaluation
$ python evaluation.py config/deeprecon_pyfastl2lir_alpha100_vgg19_allunits.yaml

Cross-validation feature decoding

# Training of decoding models
$ python cv_train_decoder_fastl2lir.py config/deeprecon_cv_pyfastl2lir_alpha100_vgg19_allunits.yaml

# Prediction of DNN features
$ python cv_predict_feature_fastl2lir.py config/deeprecon_cv_pyfastl2lir_alpha100_vgg19_allunits.yaml

# Evaluation
$ python cv_evaluation.py config/deeprecon_cv_pyfastl2lir_alpha100_vgg19_allunits.yaml

References