This is the official repo for NeurIPS 2024 paper - Motion Graph Unleashed: A Novel Approach to Video Prediction [paper][poster]
- code base
- Data preparation
- UCF Sports STRPM Dataloader
- Download link to all testing results images
git clone https://github.com/Kay1794/Motion-Graph-Video-Prediction.git
cd Motion-Graph-Video-Prediction
conda env create -f environment.yml
UCF Sports Dataset
- Data download
- MMVP split
- Unzip downloaded file
- Modify ucf_config['dataroot'] in config.py to the unziped folder
- Copy split txt files to ucf_config['dataroot']
- STRPM split
- Dataloader
- Implement steps
KITTI & Cityscapse
- We follow the data preparation steps of CVPR2023 DMVFN
Training on UCF Sports MMVP Split
python main.py --mode train --scale_in_use 4 --base_channel 16 --downsample_scale 2 2 2 --exp baseline --cos_restart --rot_aug --flip_aug --loss_list recon --edge_normalize --pred_att_iter_num 3 --tendency_len 16 --edge_list backward forward spatial --t_period 300 --nepoch 300 --eval_list psnr ssim lpips --logpath ./results/ --shuffle_scale 2 --pos_len 4 --loss_list recon --top_k 0.01 --batch 16 --dataset ucf_4to1 --energy_save_mode --log
Validation on UCF Sports MMVP Split
python main.py --mode train --scale_in_use 4 --base_channel 16 --downsample_scale 2 2 2 --exp baseline --cos_restart --rot_aug --flip_aug --loss_list recon --edge_normalize --pred_att_iter_num 3 --tendency_len 16 --edge_list backward forward spatial --t_period 300 --nepoch 300 --eval_list psnr ssim lpips --logpath /mnt/team/t-yiqizhong/projects/video_prediction/results/ --shuffle_scale 2 --pos_len 4 --loss_list recon --top_k 0.01 --batch 16 --dataset ucf_4to1 --resume ./pretrained_model/ucf_mmvp_split.pth --mode val