We provide estimation and inference for regression-based proximal causal
inference with a variety data types of outcome variables and negative
control outcomes. The supported models for the distribution of the
outcome variables include linear regression model (p2sls.lm
),
log-linear regression model (p2sls.loglin
), negative binomial
regression model (p2sls.negbin
), logistic regression model
(p2sls.logitreg
), and additive hazards regression model (p2sls.ah
).
For details of implementation, please refer to the documentation of the
individual functions. Theoretical details can be found at Liu et
al. (2024) and Li et al. (2024). An
introduction of proximal causal inference can be found at Shi et
al. (2020) and Tchetgen Tchetgen (2024).
Install from GitHub:
# install.packages("pak")
pak::pak("KenLi93/pci2s")
Liu, J., Park, C., Li, K. and Tchetgen Tchetgen, E.J., 2024. “Regression-based proximal causal inference.” American Journal of Epidemiology p.kwae370.
Li, K., Linderman, G.C., Shi, X. and Tchetgen, E.J.T., 2024. “Regression-based proximal causal inference for right-censored time-to-event data.” arXiv preprint arXiv:2409.08924.
Shi, X., Miao, W. and Tchetgen, E.T., 2020. “A selective review of negative control methods in epidemiology.” Current epidemiology reports 7, pp.190-202.
Tchetgen Tchetgen, E.J., Ying, A., Cui, Y., Shi, X. and Miao, W., 2024. “An introduction to proximal causal inference.” Statistical Science 39(3), pp.375-390.