ddpm_celeba_32×32.pth | Trained on CelebA 32 × 32 | |
ddpm_celeba_64×64.pth | Trained on CelebA 64 × 64 |
# e.g.,
python3 ../sample.py\
--mode="normal"\
--model_params="....pth
--save_path="samples/normal/0.jpg"\
--img_size=64\
--batch_size=100\
# e.g.,
python3 ../sample.py\
--mode="denoising_process"\
--model_params="....pth
--save_path="samples/denoising_process/0.gif"\
--img_size=64\
--batch_size=100\
# e.g.,
python3 ../sample.py\
--mode="interpolation"\
--model_params="....pth
--save_path="samples/interpolation/0.jpg"\
--img_size=64
--data_dir="/Users/jongbeomkim/Documents/datasets/"\
--image_idx1=50\
--image_idx2=100\
- Please refer to "Figure 9" in the paper for the meaning of each row and column.
# e.g.,
python3 ../sample.py\
--mode="coarse_to_fine"\
--model_params="....pth
--save_path="samples/coarse_to_fine/0.jpg"\
--img_size=64
--data_dir="/Users/jongbeomkim/Documents/datasets/"\
--image_idx1=50\
--image_idx2=100\
# e.g.,
python3 eval.py
--ckpt_path=".....pth"\
--real_data_dir="../img_align_celeba/"\
--gen_data_dir="../ddpm_eval_images/"\
--batch_size=32\
--n_eval_imgs=28000\
--n_cpus=4\ # Optional
--padding=1\ # Optional
--n_cells=100 # Optional
- Timestep이 매우 커질 때 이미지가 Normal gaussian distribution을 따르는 이유는?
$$\prod_{s=1}^{t}{\alpha_{s}}$$ - 1보다 작은 많은 수들을 서로 곱할 경우 0에 수렴합니다.
$$\text{FID} = \lVert\mu_{X} - \mu_{Y}\rVert^{2}{2} +Tr\big(\Sigma{x} + \Sigma_{Y} - 2\sqrt{\Sigma_{X}\Sigma_{Y}}\big)$$