Skip to content

Latest commit

 

History

History
132 lines (104 loc) · 2.9 KB

README.MD

File metadata and controls

132 lines (104 loc) · 2.9 KB

RGBD GS-ICP SLAM (100FPS Gaussian Splatting SLAM)

Seongbo Ha, Jiung Yeon, Hyeonwoo Yu

ECCV 2024

Paper | Video

github (1)

This repository is intended to substantiate the results reported in the paper. Additional features including visualization tools will be updated soon!

Environments

Install requirements

conda create -n gsicpslam python==3.9
conda activate gsicpslam
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia
pip install -r requirements.txt

Also, PCL is needed for fast-gicp submodule.

Install submodules

conda activate gsicpslam
pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn

cd submodules/fast_gicp
mkdir build
cd build
cmake ..
make
cd ..
python setup.py install --user

Datasets

  • Replica

    • Download

      bash download_replica.sh
    • Configure

      Please modify the directory structure to ours.

      The original structure

      Replica
          - room0
              - results (contain rgbd images)
                  - frame000000.jpg
                  - depth000000.jpg
                  ...
              - traj.txt
          ...

      Our structure

      Replica
          - room0
              - images (contain rgb images)
                  - frame000000.jpg
                  ...
              - depth_images (contain depth images)
                  - depth000000.jpg
                  ...
              - traj.txt
          ...
  • TUM-RGBD

    • Download
          bash download_tum.sh

Run

  • Limited to 30 FPS

        # Replica
        bash replica.sh
        # TUM
        bash tum.sh
  • Unlimited tracking speed

        # Replica
        bash replica_unlimit.sh
        # TUM
        bash tum_unlimit.sh

Installing SIBR Viewer

cd SIBR_viewers
cmake -Bbuild . -DCMAKE_BUILD_TYPE=Release
cmake --build build -j24 --target install

Real-time demo

Using rerun.io viewer

Rerun viewer shows the means of trackable Gaussians, and rendered image from reconstructed 3dgs map.

GIFMaker_me

python -W ignore gs_icp_slam.py --rerun_viewer

Using SIBR viewer

python -W ignore gs_icp_slam.py --dataset_path dataset/Replica/office0 --verbose

# In other terminal
cd SIBR_viewers
./install/bin/SIBR_remoteGaussian_app --rendering-size 1280 720

Docker

Please see the README.md in the docker_files folder.