V1.2.0
Updates in V1.2.0
-
feature_discretization:
- [Add] Add parameter
decimal
to classChiMerge.ChiMerge()
, which allows users to control the number of decimals of the feature interval boundaries. - [Add] Add data table to the feature visualization
FeatureIntervalAdjustment.plot_event_dist()
. - [Add] Add function
FeatureIntervalAdjustment.feature_stat()
that computes the input feature's sample distribution, including the sample sizes, event sizes and event proportions of each feature value.
- [Add] Add parameter
-
feature_selection.FeatureSelection:
- [Add] Add function
identify_colinear_features()
that identifies the highly-correlated features pair that may cause colinearity problem. - [Add] Add function
unstacked_corr_table()
that returns the unstacked correlation table to help analyze the colinearity problem.
- [Add] Add function
-
model_training.LogisticRegressionScoreCard:
- [Fix] Alter the
LogisticRegressionScoreCard
class so that it now accepts all parameters ofsklearn.linear_model.LogisticRegression
and itsfit()
fucntion accepts all parameters of thefit()
ofsklearn.linear_model.LogisticRegression
(includingsample_weight
) - [Add] Add parameter
baseOdds
forLogisticRegressionScoreCard
. This allows users to pass user-defined base odds (# of y=1 / # of y=0) to the Scorecard model.
- [Fix] Alter the
-
model_evaluation.ModelEvaluation:
- [Add] Add function
pref_table
, which evaluates the classification performance on differet levels of model scores . This function is useful for setting classification threshold based on precision and recall.
- [Add] Add function
-
model_interpretation:
- [Add] Add function
ScorecardExplainer.important_features()
to help interpret the result of a individual instance. This function indentifies features who contribute the most in pusing the total score of a particular instance above a threshold.
- [Add] Add function