ML project on Car Segmentation with Deloitte, for DTU Deep Learning course.
- run
make requirements
fromdl_kitkars
folder - run
wandb login
, then go to the Wandb of our project, copy the key and get WANDB authorization - download
unet_carvana_scale0.5_epoch2.pth
inmodels
folder - download
clean_data
files (3521 files) indata/raw/carseg_data/clean_data
- To debug:
import pdb; pdb.set_trace()
- Start a tmux session:
tmux new -s <someName>
- Attach the tmux session later:
tmux attach -t <someName>
- Kill a tmux session:
tmux kill-session
- Remove a local commit without any changes:
git reset HEAD~1 --soft
- HPC keywords:
voltash
,sxm2sh
ora100sh
- About tmux: https://linuxize.com/post/getting-started-with-tmux/
- HPC GPU available: https://www.hpc.dtu.dk/?page_id=2129
- MLOps course website: https://skaftenicki.github.io/dtu_mlops/
├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.*
| └── carseg_data
| └── clean_data
│
├── docs <- A default Sphinx project; see sphinx-doc.org for details
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to download or generate data
│ │ └── make_dataset.py
│ │
│ ├── features <- Scripts to turn raw data into features for modeling
│ │ └── build_features.py
│ │
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ ├── predict_model.py
│ │ └── train_model.py
│ │
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py
│
└── tox.ini <- tox file with settings for running tox; see tox.readthedocs.io
Project based on the cookiecutter data science project template. #cookiecutterdatascience