Skip to content

Commit

Permalink
Refactor detect.py arguments (ultralytics#3559)
Browse files Browse the repository at this point in the history
* Refactor detect.py arguments

@SkalskiP @kalenmike

* unused ok

* comment arguments
  • Loading branch information
glenn-jocher authored Jun 9, 2021
1 parent a9553c0 commit 66cf5c2
Showing 1 changed file with 46 additions and 27 deletions.
73 changes: 46 additions & 27 deletions detect.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,20 +15,42 @@


@torch.no_grad()
def detect(opt):
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
def detect(weights='yolov5s.pt', # model.pt path(s)
source='data/images', # file/dir/URL/glob, 0 for webcam
imgsz=640, # inference size (pixels)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
update=False, # update all models
project='runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
):
save_img = not nosave and not source.endswith('.txt') # save inference images
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://', 'https://'))

# Directories
save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir

# Initialize
set_logging()
device = select_device(opt.device)
half = opt.half and device.type != 'cpu' # half precision only supported on CUDA
device = select_device(device)
half &= device.type != 'cpu' # half precision only supported on CUDA

# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
Expand Down Expand Up @@ -66,11 +88,10 @@ def detect(opt):

# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
pred = model(img, augment=augment)[0]

# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms,
max_det=opt.max_det)
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
t2 = time_synchronized()

# Apply Classifier
Expand All @@ -89,7 +110,7 @@ def detect(opt):
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if opt.save_crop else im0 # for opt.save_crop
imc = im0.copy() if save_crop else im0 # for save_crop
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
Expand All @@ -103,15 +124,15 @@ def detect(opt):
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')

if save_img or opt.save_crop or view_img: # Add bbox to image
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}')
plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=opt.line_thickness)
if opt.save_crop:
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=line_thickness)
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

# Print time (inference + NMS)
Expand Down Expand Up @@ -145,19 +166,22 @@ def detect(opt):
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")

if update:
strip_optimizer(weights) # update model (to fix SourceChangeWarning)

print(f'Done. ({time.time() - t0:.3f}s)')


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--max-det', type=int, default=1000, help='maximum number of detections per image')
parser.add_argument('--source', type=str, default='data/images', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IOU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
Expand All @@ -177,9 +201,4 @@ def detect(opt):
print(opt)
check_requirements(exclude=('tensorboard', 'thop'))

if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
detect(opt=opt)
strip_optimizer(opt.weights)
else:
detect(opt=opt)
detect(**vars(opt))

0 comments on commit 66cf5c2

Please sign in to comment.