Skip to content

LiaoWeiHsiang/OpenPCDet

Repository files navigation

GNN-based Point Cloud Maps Feature Extraction and Residual Feature Fusion for 3D Object Detection

一張圖片

Abstract

We propose a novel method that combine Point Cloud Map with LiDAR object detection method and extract the environment information using Graph Neural Network to improve the detection performance on long-range objects and reduce false positives. We implement our method base on a excellent object detector PV-RCNN and test on NuScenes dataset.

Installation

Requirements

All the codes are tested in the following environment:

  • Linux (tested on Ubuntu 16.04)
  • Python 3.6
  • PyTorch 1.8
  • CUDA 10.0
  • spconv v1.2.1

Install

a. Clone this repository.

git clone https://github.com/open-mmlab/OpenPCDet.git

b. Install the dependent libraries as follows:

c. Install this project's library and its dependent libraries by running the following command:

python setup.py develop

Getting Started

Dataset Preparation

NuScenes Dataset

OpenPCDet
├── data
│   ├── nuscenes
│   │   │── v1.0-trainval (or v1.0-mini if you use mini)
│   │   │   │── samples
│   │   │   │── sweeps
│   │   │   │── maps
│   │   │   │── v1.0-trainval  
├── pcdet
├── tools
  • Install the nuscenes-devkit with version 1.0.5 by running the following command:
pip install nuscenes-devkit==1.0.5
  • Generate the data infos by running the following command (it may take several hours):
python -m pcdet.datasets.nuscenes.nuscenes_dataset --func create_nuscenes_infos \
    --cfg_file tools/cfgs/dataset_configs/nuscenes_dataset.yaml \
    --version v1.0-trainval
OpenPCDet
├── maps
│   ├──cfg
│   │   ├──map_by_scenes_v7_Downsampling0.1_no_ground_ieflat
│   │   │   ├──boston-seaport      
│   │   │   ├──singapore-hollandvillage
│   │   │   ├──singapore-onenorth
│   │   │   ├──singapore-queenstown
├── data
├── pcdet
├── tools

Pretrained Models

The pretrained models can be obtained on: https://drive.google.com/file/d/1TopnnbRCMH5_3G0hyKuTKeP8Y55OSoD3/view?usp=sharing

OpenPCDet
├── output
│   ├──cfg
│   │   ├──nuscenes_models
│   │   │   ├──...
├── data
├── pcdet
├── tools

Training & Testing

  • Test with a pretrained model:
python test.py --cfg_file ./cfgs/nuscenes_models/pv_rcnn.yaml --ckpt ../output/cfgs/nuscenes_models/pv_rcnn/default/ckpt/checkpoint_epoch_33.pth --batch_size 1 --map_shift 0
  • Train a model
python train.py --cfg_file ./cfgs/nuscenes_models/pv_rcnn.yaml --map_shift 0

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published