Skip to content

adding logger args #1973

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
May 27, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 9 additions & 2 deletions extensions/thunder/pretrain.py
Original file line number Diff line number Diff line change
@@ -5,6 +5,7 @@
import pprint
import sys
import time
from dataclasses import asdict
from datetime import timedelta
from functools import partial
from pathlib import Path
@@ -20,7 +21,7 @@
from typing_extensions import Literal

from litgpt import Tokenizer
from litgpt.args import EvalArgs, TrainArgs
from litgpt.args import EvalArgs, LogArgs, TrainArgs
from litgpt.data import DataModule, TinyLlama
from litgpt.model import GPT, Block, CausalSelfAttention, Config, LLaMAMLP
from litgpt.utils import (
@@ -70,6 +71,7 @@ def setup(
tie_embeddings=False,
),
eval: EvalArgs = EvalArgs(interval=1000, max_iters=100),
log: LogArgs = LogArgs(),
optimizer: Union[str, Dict] = "AdamW",
devices: Union[int, str] = "auto",
num_nodes: int = 1,
@@ -121,7 +123,12 @@ def setup(
tokenizer = Tokenizer(tokenizer_dir) if tokenizer_dir is not None else None

logger = choose_logger(
logger_name, out_dir, name=f"pretrain-{config.name}", resume=bool(resume), log_interval=train.log_interval
logger_name,
out_dir,
name=f"pretrain-{config.name}",
resume=bool(resume),
log_interval=train.log_interval,
log_args=asdict(log),
)

if devices * num_nodes > 1:
12 changes: 12 additions & 0 deletions litgpt/args.py
Original file line number Diff line number Diff line change
@@ -90,3 +90,15 @@ class EvalArgs:
evaluate_example: Union[str, int] = "first"
"""How to pick an example instruction to evaluate periodically during training.
Can be "first", "random", or an integer index to pick a specific example."""


@dataclass
class LogArgs:
"""Logging-related arguments"""

project: Optional[str] = None
"""Project name"""
run: Optional[str] = None
"""Run name"""
group: Optional[str] = None
"""Group name"""
11 changes: 9 additions & 2 deletions litgpt/finetune/adapter.py
Original file line number Diff line number Diff line change
@@ -18,7 +18,7 @@
from torchmetrics import RunningMean

from litgpt.adapter import GPT, Block, Config, adapter_filter, mark_only_adapter_as_trainable
from litgpt.args import EvalArgs, TrainArgs
from litgpt.args import EvalArgs, LogArgs, TrainArgs
from litgpt.data import Alpaca, DataModule
from litgpt.generate.base import generate
from litgpt.prompts import save_prompt_style
@@ -62,6 +62,7 @@ def setup(
max_seq_length=None,
),
eval: EvalArgs = EvalArgs(interval=100, max_new_tokens=100, max_iters=100),
log: LogArgs = LogArgs(),
optimizer: Union[str, Dict] = "AdamW",
logger_name: Literal["wandb", "tensorboard", "csv", "mlflow"] = "csv",
seed: int = 1337,
@@ -95,7 +96,13 @@ def setup(
config = Config.from_file(checkpoint_dir / "model_config.yaml")

precision = precision or get_default_supported_precision(training=True)
logger = choose_logger(logger_name, out_dir, name=f"finetune-{config.name}", log_interval=train.log_interval)
logger = choose_logger(
logger_name,
out_dir,
name=f"finetune-{config.name}",
log_interval=train.log_interval,
log_args=dataclasses.asdict(log),
)

plugins = None
if quantize is not None and quantize.startswith("bnb."):
11 changes: 9 additions & 2 deletions litgpt/finetune/adapter_v2.py
Original file line number Diff line number Diff line change
@@ -18,7 +18,7 @@
from torchmetrics import RunningMean

from litgpt.adapter_v2 import GPT, Block, Config, adapter_filter, mark_only_adapter_v2_as_trainable
from litgpt.args import EvalArgs, TrainArgs
from litgpt.args import EvalArgs, LogArgs, TrainArgs
from litgpt.data import Alpaca, DataModule
from litgpt.generate.base import generate
from litgpt.prompts import save_prompt_style
@@ -64,6 +64,7 @@ def setup(
max_seq_length=None,
),
eval: EvalArgs = EvalArgs(interval=100, max_new_tokens=100, max_iters=100),
log: LogArgs = LogArgs(),
optimizer: Union[str, Dict] = "AdamW",
logger_name: Literal["wandb", "tensorboard", "csv", "mlflow"] = "csv",
seed: int = 1337,
@@ -97,7 +98,13 @@ def setup(
config = Config.from_file(checkpoint_dir / "model_config.yaml")

precision = precision or get_default_supported_precision(training=True)
logger = choose_logger(logger_name, out_dir, name=f"finetune-{config.name}", log_interval=train.log_interval)
logger = choose_logger(
logger_name,
out_dir,
name=f"finetune-{config.name}",
log_interval=train.log_interval,
log_args=dataclasses.asdict(log),
)

plugins = None
if quantize is not None and quantize.startswith("bnb."):
10 changes: 8 additions & 2 deletions litgpt/finetune/full.py
Original file line number Diff line number Diff line change
@@ -13,7 +13,7 @@
from torch.utils.data import ConcatDataset, DataLoader
from torchmetrics import RunningMean

from litgpt.args import EvalArgs, TrainArgs
from litgpt.args import EvalArgs, LogArgs, TrainArgs
from litgpt.data import Alpaca, DataModule
from litgpt.generate.base import generate
from litgpt.model import GPT, Block, Config
@@ -58,6 +58,7 @@ def setup(
max_seq_length=None,
),
eval: EvalArgs = EvalArgs(interval=600, max_new_tokens=100, max_iters=100),
log: LogArgs = LogArgs(),
optimizer: Union[str, Dict] = "AdamW",
logger_name: Literal["wandb", "tensorboard", "csv", "mlflow"] = "csv",
seed: int = 1337,
@@ -94,7 +95,12 @@ def setup(

precision = precision or get_default_supported_precision(training=True)
logger = choose_logger(
logger_name, out_dir, name=f"finetune-{config.name}", resume=bool(resume), log_interval=train.log_interval
logger_name,
out_dir,
name=f"finetune-{config.name}",
resume=bool(resume),
log_interval=train.log_interval,
log_args=dataclasses.asdict(log),
)

if devices * num_nodes > 1:
11 changes: 9 additions & 2 deletions litgpt/finetune/lora.py
Original file line number Diff line number Diff line change
@@ -17,7 +17,7 @@
from torch.utils.data import ConcatDataset, DataLoader
from torchmetrics import RunningMean

from litgpt.args import EvalArgs, TrainArgs
from litgpt.args import EvalArgs, LogArgs, TrainArgs
from litgpt.data import Alpaca, DataModule
from litgpt.generate.base import generate
from litgpt.lora import GPT, Block, Config, lora_filter, mark_only_lora_as_trainable
@@ -71,6 +71,7 @@ def setup(
epochs=5,
max_seq_length=None,
),
log: LogArgs = LogArgs(),
eval: EvalArgs = EvalArgs(interval=100, max_new_tokens=100, max_iters=100),
optimizer: Union[str, Dict] = "AdamW",
logger_name: Literal["wandb", "tensorboard", "csv", "mlflow"] = "csv",
@@ -125,7 +126,13 @@ def setup(
)

precision = precision or get_default_supported_precision(training=True)
logger = choose_logger(logger_name, out_dir, name=f"finetune-{config.name}", log_interval=train.log_interval)
logger = choose_logger(
logger_name,
out_dir,
name=f"finetune-{config.name}",
log_interval=train.log_interval,
log_args=dataclasses.asdict(log),
)

plugins = None
if quantize is not None and quantize.startswith("bnb."):
11 changes: 9 additions & 2 deletions litgpt/pretrain.py
Original file line number Diff line number Diff line change
@@ -3,6 +3,7 @@
import math
import pprint
import time
from dataclasses import asdict
from datetime import timedelta
from functools import partial
from pathlib import Path
@@ -18,7 +19,7 @@
from typing_extensions import Literal

from litgpt import Tokenizer
from litgpt.args import EvalArgs, TrainArgs
from litgpt.args import EvalArgs, LogArgs, TrainArgs
from litgpt.config import name_to_config
from litgpt.data import DataModule, TinyLlama
from litgpt.model import GPT, Block, CausalSelfAttention, Config, LLaMAMLP
@@ -62,6 +63,7 @@ def setup(
tie_embeddings=False,
),
eval: EvalArgs = EvalArgs(interval=1000, max_iters=100),
log: LogArgs = LogArgs(),
optimizer: Union[str, Dict] = "AdamW",
devices: Union[int, str] = "auto",
num_nodes: int = 1,
@@ -127,7 +129,12 @@ def setup(
tokenizer = Tokenizer(tokenizer_dir) if tokenizer_dir is not None else None

logger = choose_logger(
logger_name, out_dir, name=f"pretrain-{config.name}", resume=bool(resume), log_interval=train.log_interval
logger_name,
out_dir,
name=f"pretrain-{config.name}",
resume=bool(resume),
log_interval=train.log_interval,
log_args=asdict(log),
)

if devices * num_nodes > 1:
6 changes: 5 additions & 1 deletion litgpt/utils.py
Original file line number Diff line number Diff line change
@@ -542,6 +542,7 @@ def choose_logger(
out_dir: Path,
name: str,
log_interval: int = 1,
log_args: Optional[Dict] = None,
resume: Optional[bool] = None,
**kwargs: Any,
):
@@ -550,7 +551,10 @@ def choose_logger(
if logger_name == "tensorboard":
return TensorBoardLogger(root_dir=(out_dir / "logs"), name="tensorboard", **kwargs)
if logger_name == "wandb":
return WandbLogger(project=name, resume=resume, **kwargs)
project = log_args.pop("project", name)
run = log_args.pop("run", os.environ.get("WANDB_RUN_NAME"))
group = log_args.pop("group", os.environ.get("WANDB_RUN_GROUP"))
return WandbLogger(project=project, name=run, group=group, resume=resume, **kwargs)
if logger_name == "mlflow":
return MLFlowLogger(experiment_name=name, **kwargs)
raise ValueError(f"`--logger_name={logger_name}` is not a valid option. Choose from 'csv', 'tensorboard', 'wandb'.")