Skip to content

Commit

Permalink
tests: add default_root_dir=tmpdir
Browse files Browse the repository at this point in the history
  • Loading branch information
Borda committed Jun 29, 2020
1 parent 58f03f3 commit 1bada9d
Show file tree
Hide file tree
Showing 14 changed files with 56 additions and 51 deletions.
1 change: 1 addition & 0 deletions tests/callbacks/test_callbacks.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,6 +166,7 @@ def on_test_end(self, trainer, pl_module):
limit_val_batches=0.1,
limit_train_batches=0.2,
progress_bar_refresh_rate=0,
default_root_dir=tmpdir,
)

assert not test_callback.setup_called
Expand Down
2 changes: 2 additions & 0 deletions tests/callbacks/test_progress_bar.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@ def test_progress_bar_totals(tmpdir):
progress_bar_refresh_rate=1,
limit_val_batches=1.0,
max_epochs=1,
default_root_dir=tmpdir,
)
bar = trainer.progress_bar_callback
assert 0 == bar.total_train_batches
Expand Down Expand Up @@ -182,6 +183,7 @@ def on_test_batch_end(self, trainer, pl_module):
limit_train_batches=1.0,
num_sanity_val_steps=2,
max_epochs=3,
default_root_dir=tmpdir,
)
assert trainer.progress_bar_callback.refresh_rate == refresh_rate

Expand Down
1 change: 1 addition & 0 deletions tests/loggers/test_all.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,7 @@ def log_metrics(self, metrics, step):
limit_train_batches=0.2,
limit_val_batches=0.5,
fast_dev_run=True,
default_root_dir=tmpdir,
)
trainer.fit(model)

Expand Down
2 changes: 1 addition & 1 deletion tests/loggers/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@ def test_multiple_loggers(tmpdir):
assert logger2.finalized_status == "success"


def test_multiple_loggers_pickle(tmpdir):
def test_multiple_loggers_pickle():
"""Verify that pickling trainer with multiple loggers works."""

logger1 = CustomLogger()
Expand Down
5 changes: 4 additions & 1 deletion tests/loggers/test_tensorboard.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,10 @@
def test_tensorboard_hparams_reload(tmpdir):
model = EvalModelTemplate()

trainer = Trainer(max_epochs=1, default_root_dir=tmpdir)
trainer = Trainer(
max_epochs=1,
default_root_dir=tmpdir,
)
trainer.fit(model)

folder_path = trainer.logger.log_dir
Expand Down
14 changes: 5 additions & 9 deletions tests/models/test_amp.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,18 +39,15 @@ def test_amp_multi_gpu(tmpdir, backend):
tutils.set_random_master_port()

model = EvalModelTemplate()

trainer_options = dict(
# tutils.run_model_test(trainer_options, model)
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
# gpus=2,
gpus='0, 1', # test init with gpu string
distributed_backend=backend,
precision=16,
)

# tutils.run_model_test(trainer_options, model)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result

Expand All @@ -66,17 +63,15 @@ def test_multi_gpu_wandb(tmpdir, backend):
model = EvalModelTemplate()
logger = WandbLogger(name='utest')

trainer_options = dict(
# tutils.run_model_test(trainer_options, model)
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
gpus=2,
distributed_backend=backend,
precision=16,
logger=logger,

)
# tutils.run_model_test(trainer_options, model)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result
trainer.test(model)
Expand Down Expand Up @@ -107,6 +102,7 @@ def test_amp_gpu_ddp_slurm_managed(tmpdir):
precision=16,
checkpoint_callback=checkpoint,
logger=logger,
default_root_dir=tmpdir,
)
trainer.is_slurm_managing_tasks = True
result = trainer.fit(model)
Expand Down
3 changes: 3 additions & 0 deletions tests/models/test_cpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ def test_cpu_slurm_save_load(tmpdir):
limit_train_batches=0.2,
limit_val_batches=0.2,
checkpoint_callback=ModelCheckpoint(tmpdir),
default_root_dir=tmpdir,
)
result = trainer.fit(model)
real_global_step = trainer.global_step
Expand Down Expand Up @@ -66,6 +67,7 @@ def test_cpu_slurm_save_load(tmpdir):
max_epochs=1,
logger=logger,
checkpoint_callback=ModelCheckpoint(tmpdir),
default_root_dir=tmpdir,
)
model = EvalModelTemplate(**hparams)

Expand Down Expand Up @@ -223,6 +225,7 @@ def test_running_test_no_val(tmpdir):
checkpoint_callback=checkpoint,
logger=logger,
early_stop_callback=False,
default_root_dir=tmpdir,
)
result = trainer.fit(model)

Expand Down
20 changes: 8 additions & 12 deletions tests/models/test_gpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,18 +39,16 @@ def test_multi_gpu_model(tmpdir, backend):
"""Make sure DDP works."""
tutils.set_random_master_port()

trainer_options = dict(
model = EvalModelTemplate()
# tutils.run_model_test(trainer_options, model)
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=0.4,
limit_val_batches=0.2,
gpus=[0, 1],
distributed_backend=backend,
)

model = EvalModelTemplate()
# tutils.run_model_test(trainer_options, model)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result

Expand All @@ -64,7 +62,11 @@ def test_ddp_all_dataloaders_passed_to_fit(tmpdir):
"""Make sure DDP works with dataloaders passed to fit()"""
tutils.set_random_master_port()

trainer_options = dict(
model = EvalModelTemplate()
fit_options = dict(train_dataloader=model.train_dataloader(),
val_dataloaders=model.val_dataloader())

trainer = Trainer(
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=1,
Expand All @@ -73,12 +75,6 @@ def test_ddp_all_dataloaders_passed_to_fit(tmpdir):
gpus=[0, 1],
distributed_backend='ddp'
)

model = EvalModelTemplate()
fit_options = dict(train_dataloader=model.train_dataloader(),
val_dataloaders=model.val_dataloader())

trainer = Trainer(**trainer_options)
result = trainer.fit(model, **fit_options)
assert result == 1, "DDP doesn't work with dataloaders passed to fit()."

Expand Down
1 change: 1 addition & 0 deletions tests/models/test_grad_norm.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,7 @@ def test_grad_tracking(tmpdir, norm_type, rtol=5e-3):
logger=logger,
track_grad_norm=norm_type,
row_log_interval=1, # request grad_norms every batch
default_root_dir=tmpdir,
)
result = trainer.fit(model)

Expand Down
1 change: 1 addition & 0 deletions tests/models/test_hooks.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ def on_before_zero_grad(self, optimizer):
max_steps=max_steps,
max_epochs=2,
num_sanity_val_steps=5,
default_root_dir=tmpdir,
)
assert 0 == model.on_before_zero_grad_called
trainer.fit(model)
Expand Down
6 changes: 2 additions & 4 deletions tests/models/test_horovod.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,7 +146,8 @@ def validation_step(self, batch, *args, **kwargs):
def test_horovod_multi_optimizer(tmpdir):
model = TestGAN(**EvalModelTemplate.get_default_hparams())

trainer_options = dict(
# fit model
trainer = Trainer(
default_root_dir=str(tmpdir),
progress_bar_refresh_rate=0,
max_epochs=1,
Expand All @@ -155,9 +156,6 @@ def test_horovod_multi_optimizer(tmpdir):
deterministic=True,
distributed_backend='horovod',
)

# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result == 1, 'model failed to complete'

Expand Down
11 changes: 6 additions & 5 deletions tests/models/test_restore.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@ def test_running_test_pretrained_model_distrib(tmpdir, backend):
logger=logger,
gpus=[0, 1],
distributed_backend=backend,
default_root_dir=tmpdir,
)

# fit model
Expand Down Expand Up @@ -84,6 +85,7 @@ def test_running_test_pretrained_model_cpu(tmpdir):
limit_val_batches=0.2,
checkpoint_callback=checkpoint,
logger=logger,
default_root_dir=tmpdir,
)

# fit model
Expand Down Expand Up @@ -225,14 +227,13 @@ def test_model_saving_loading(tmpdir):
# logger file to get meta
logger = tutils.get_default_logger(tmpdir)

trainer_options = dict(
# fit model
trainer = Trainer(
max_epochs=1,
logger=logger,
checkpoint_callback=ModelCheckpoint(tmpdir)
checkpoint_callback=ModelCheckpoint(tmpdir),
default_root_dir=tmpdir,
)

# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)

# traning complete
Expand Down
22 changes: 11 additions & 11 deletions tests/trainer/test_dataloaders.py
Original file line number Diff line number Diff line change
Expand Up @@ -232,7 +232,7 @@ def test_multiple_dataloaders_passed_to_fit(tmpdir, ckpt_path):
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2
limit_train_batches=0.2,
)
fit_options = dict(train_dataloader=model.dataloader(train=True),
val_dataloaders=[model.dataloader(train=False),
Expand Down Expand Up @@ -336,7 +336,7 @@ def test_mixing_of_dataloader_options(tmpdir, ckpt_path):
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2
limit_train_batches=0.2,
)

# fit model
Expand Down Expand Up @@ -453,13 +453,6 @@ def test_warning_with_few_workers(tmpdir, ckpt_path):
model = EvalModelTemplate()

# logger file to get meta
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2
)

train_dl = model.dataloader(train=True)
train_dl.num_workers = 0

Expand All @@ -471,7 +464,12 @@ def test_warning_with_few_workers(tmpdir, ckpt_path):

fit_options = dict(train_dataloader=train_dl,
val_dataloaders=val_dl)
trainer = Trainer(**trainer_options)
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2,
)

# fit model
with pytest.warns(UserWarning, match='train'):
Expand All @@ -488,7 +486,7 @@ def test_warning_with_few_workers(tmpdir, ckpt_path):


@pytest.mark.skipif(torch.cuda.device_count() < 2, reason='Test requires multiple GPUs')
def test_dataloader_reinit_for_subclass():
def test_dataloader_reinit_for_subclass(tmpdir):

class CustomDataLoader(torch.utils.data.DataLoader):
def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None,
Expand All @@ -505,6 +503,7 @@ def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None,
gpus=[0, 1],
num_nodes=1,
distributed_backend='ddp',
default_root_dir=tmpdir,
)

class CustomDummyObj:
Expand Down Expand Up @@ -577,6 +576,7 @@ def train_dataloader(self):
limit_train_batches=0.1,
limit_val_batches=0,
gpus=num_gpus,
default_root_dir=tmpdir,
)

# we expect the reduction for the metrics also to happen on the last batch
Expand Down
18 changes: 10 additions & 8 deletions tests/trainer/test_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -168,11 +168,13 @@ def _optimizer_step(self, epoch, batch_idx, optimizer,
model = EvalModelTemplate()
schedule = {1: 2, 3: 4}

trainer = Trainer(accumulate_grad_batches=schedule,
limit_train_batches=0.1,
limit_val_batches=0.1,
max_epochs=2,
default_root_dir=tmpdir)
trainer = Trainer(
accumulate_grad_batches=schedule,
limit_train_batches=0.1,
limit_val_batches=0.1,
max_epochs=2,
default_root_dir=tmpdir,
)

# for the test
trainer.optimizer_step = _optimizer_step
Expand Down Expand Up @@ -435,7 +437,7 @@ def test_trainer_max_steps_and_epochs(tmpdir):
trainer_options.update(
default_root_dir=tmpdir,
max_epochs=3,
max_steps=num_train_samples + 10
max_steps=num_train_samples + 10,
)

# fit model
Expand All @@ -449,7 +451,7 @@ def test_trainer_max_steps_and_epochs(tmpdir):
# define less train epochs than steps
trainer_options.update(
max_epochs=2,
max_steps=trainer_options['max_epochs'] * 2 * num_train_samples
max_steps=trainer_options['max_epochs'] * 2 * num_train_samples,
)

# fit model
Expand All @@ -472,7 +474,7 @@ def test_trainer_min_steps_and_epochs(tmpdir):
early_stop_callback=EarlyStopping(monitor='val_loss', min_delta=1.0),
val_check_interval=2,
min_epochs=1,
max_epochs=7
max_epochs=7,
)

# define less min steps than 1 epoch
Expand Down

0 comments on commit 1bada9d

Please sign in to comment.