Skip to content

Commit

Permalink
Deprecate nvidia/apex (#16039)
Browse files Browse the repository at this point in the history
  • Loading branch information
carmocca committed Dec 20, 2022
1 parent de08b54 commit 9dea1c3
Show file tree
Hide file tree
Showing 57 changed files with 509 additions and 443 deletions.
15 changes: 8 additions & 7 deletions docs/source-pytorch/accelerators/gpu_intermediate.rst
Original file line number Diff line number Diff line change
Expand Up @@ -469,25 +469,26 @@ Validation and test step have the same option when using DP.
Distributed and 16-bit precision
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Due to an issue with Apex and DataParallel (PyTorch and NVIDIA issue), Lightning does
not allow 16-bit and DP training. We tried to get this to work, but it's an issue on their end.

Below are the possible configurations we support.

+-------+---------+-----+-----+--------+-----------------------------------------------------------------------+
| 1 GPU | 1+ GPUs | DP | DDP | 16-bit | command |
| 1 GPU | 1+ GPUs | DDP | DP | 16-bit | command |
+=======+=========+=====+=====+========+=======================================================================+
| Y | | | | | `Trainer(accelerator="gpu", devices=1)` |
+-------+---------+-----+-----+--------+-----------------------------------------------------------------------+
| Y | | | | Y | `Trainer(accelerator="gpu", devices=1, precision=16)` |
+-------+---------+-----+-----+--------+-----------------------------------------------------------------------+
| | Y | Y | | | `Trainer(accelerator="gpu", devices=k, strategy='dp')` |
| | Y | Y | | | `Trainer(accelerator="gpu", devices=k, strategy='ddp')` |
+-------+---------+-----+-----+--------+-----------------------------------------------------------------------+
| | Y | Y | | Y | `Trainer(accelerator="gpu", devices=k, strategy='ddp', precision=16)` |
+-------+---------+-----+-----+--------+-----------------------------------------------------------------------+
| | Y | | Y | | `Trainer(accelerator="gpu", devices=k, strategy='ddp')` |
| | Y | | Y | | `Trainer(accelerator="gpu", devices=k, strategy='dp')` |
+-------+---------+-----+-----+--------+-----------------------------------------------------------------------+
| | Y | | Y | Y | `Trainer(accelerator="gpu", devices=k, strategy='ddp', precision=16)` |
| | Y | | Y | Y | `Trainer(accelerator="gpu", devices=k, strategy='dp', precision=16)` |
+-------+---------+-----+-----+--------+-----------------------------------------------------------------------+

DDP and DP can also be used with 1 GPU, but there's no reason to do so other than debugging distributed-related issues.


Implement Your Own Distributed (DDP) training
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Expand Down
3 changes: 1 addition & 2 deletions docs/source-pytorch/api_references.rst
Original file line number Diff line number Diff line change
Expand Up @@ -184,15 +184,14 @@ precision
:nosignatures:
:template: classtemplate.rst

ApexMixedPrecisionPlugin
ColossalAIPrecisionPlugin
DeepSpeedPrecisionPlugin
DoublePrecisionPlugin
FullyShardedNativeMixedPrecisionPlugin
FullyShardedNativeNativeMixedPrecisionPlugin
HPUPrecisionPlugin
IPUPrecisionPlugin
NativeMixedPrecisionPlugin
MixedPrecisionPlugin
PrecisionPlugin
ShardedNativeMixedPrecisionPlugin
TPUBf16PrecisionPlugin
Expand Down
2 changes: 1 addition & 1 deletion docs/source-pytorch/common/checkpointing_basic.rst
Original file line number Diff line number Diff line change
Expand Up @@ -186,5 +186,5 @@ If you don't just want to load weights, but instead restore the full training, d
model = LitModel()
trainer = Trainer()
# automatically restores model, epoch, step, LR schedulers, apex, etc...
# automatically restores model, epoch, step, LR schedulers, etc...
trainer.fit(model, ckpt_path="some/path/to/my_checkpoint.ckpt")
4 changes: 0 additions & 4 deletions docs/source-pytorch/common/optimization.rst
Original file line number Diff line number Diff line change
Expand Up @@ -151,7 +151,6 @@ For example, here step optimizer A every batch and optimizer B every 2 batches.
optimizer_idx,
optimizer_closure,
on_tpu=False,
using_native_amp=False,
using_lbfgs=False,
):
# update generator every step
Expand Down Expand Up @@ -183,7 +182,6 @@ Here we add a manual learning rate warm-up without an lr scheduler.
optimizer_idx,
optimizer_closure,
on_tpu=False,
using_native_amp=False,
using_lbfgs=False,
):
# update params
Expand Down Expand Up @@ -215,7 +213,6 @@ to perform a step, Lightning won't be able to support accelerators, precision an
optimizer_idx,
optimizer_closure,
on_tpu=False,
using_native_amp=False,
using_lbfgs=False,
):
optimizer.step(closure=optimizer_closure)
Expand All @@ -232,7 +229,6 @@ to perform a step, Lightning won't be able to support accelerators, precision an
optimizer_idx,
optimizer_closure,
on_tpu=False,
using_native_amp=False,
using_lbfgs=False,
):
optimizer = optimizer.optimizer
Expand Down
41 changes: 1 addition & 40 deletions docs/source-pytorch/common/precision_intermediate.rst
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@ FP16 Mixed Precision
********************

In most cases, mixed precision uses FP16. Supported `PyTorch operations <https://pytorch.org/docs/stable/amp.html#op-specific-behavior>`__ automatically run in FP16, saving memory and improving throughput on the supported accelerators.
Since computation happens in FP16, there is a chance of numerical instability during training. This is handled internally by a dynamic grad scaler which skips invalid steps and adjusts the scaler to ensure subsequent steps fall within a finite range. For more information `see the autocast docs <https://pytorch.org/docs/stable/amp.html#gradient-scaling>`__.


.. note::
Expand All @@ -69,46 +70,6 @@ In most cases, mixed precision uses FP16. Supported `PyTorch operations <https:/

Trainer(accelerator="gpu", devices=1, precision=16)


PyTorch Native
--------------

PyTorch 1.6 release introduced mixed precision functionality into their core as the AMP package, `torch.cuda.amp <https://pytorch.org/docs/stable/amp.html>`__. It is more flexible and intuitive compared to `NVIDIA APEX <https://github.com/NVIDIA/apex>`__.
Since computation happens in FP16, there is a chance of numerical instability during training. This is handled internally by a dynamic grad scaler which skips invalid steps and adjusts the scaler to ensure subsequent steps fall within a finite range. For more information `see the autocast docs <https://pytorch.org/docs/stable/amp.html#gradient-scaling>`__.
Lightning uses native amp by default with ``precision=16|"bf16"``. You can also set it using:

.. testcode::

Trainer(precision=16, amp_backend="native")


NVIDIA APEX
-----------

.. warning::

We strongly recommend using the above native mixed precision rather than NVIDIA APEX unless you require more refined control.

`NVIDIA APEX <https://github.com/NVIDIA/apex>`__ offers additional flexibility in setting mixed precision. This can be useful when trying out different precision configurations, such as keeping most of your weights in FP16 and running computation in FP16.

.. testcode::
:skipif: not _APEX_AVAILABLE or not torch.cuda.is_available()

Trainer(accelerator="gpu", devices=1, amp_backend="apex", precision=16)

Set the `NVIDIA optimization level <https://nvidia.github.io/apex/amp.html#opt-levels>`__ via the precision plugin.

.. testcode::
:skipif: not _APEX_AVAILABLE or not torch.cuda.is_available()

from pytorch_lightning.plugins import ApexMixedPrecisionPlugin


apex_plugin = ApexMixedPrecisionPlugin(amp_level="O3")
Trainer(accelerator="gpu", devices=1, precision=16, plugins=[apex_plugin])

----

************************
BFloat16 Mixed Precision
************************
Expand Down
42 changes: 0 additions & 42 deletions docs/source-pytorch/common/trainer.rst
Original file line number Diff line number Diff line change
Expand Up @@ -289,27 +289,6 @@ Example::
# no accumulation for epochs 1-4. accumulate 3 for epochs 5-10. accumulate 20 after that
trainer = Trainer(accumulate_grad_batches={5: 3, 10: 20})

amp_backend
^^^^^^^^^^^

.. raw:: html

<video width="50%" max-width="400px" controls
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/amp_backend.jpg"
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/amp_backend.mp4"></video>

|
Use PyTorch AMP ('native'), or NVIDIA apex ('apex').

.. testcode::

# using PyTorch built-in AMP, default used by the Trainer
trainer = Trainer(amp_backend="native")

# using NVIDIA Apex
trainer = Trainer(amp_backend="apex")

auto_scale_batch_size
^^^^^^^^^^^^^^^^^^^^^

Expand Down Expand Up @@ -1156,27 +1135,6 @@ Half precision, or mixed precision, is the combined use of 32 and 16 bit floatin

.. note:: When running on TPUs, torch.bfloat16 will be used but tensor printing will still show torch.float32.

.. admonition:: If you are interested in using Apex 16-bit training:
:class: dropdown

NVIDIA Apex and DDP have instability problems. We recommend using the native AMP for 16-bit precision with multiple GPUs.
To use Apex 16-bit training:

1. `Install apex. <https://github.com/NVIDIA/apex#quick-start>`__

2. Set the ``precision`` trainer flag to 16. You can customize the `Apex optimization level <https://nvidia.github.io/apex/amp.html#opt-levels>`_ by setting the ``amp_level`` flag
in the precision plugin.

.. testcode::
:skipif: not _APEX_AVAILABLE or not torch.cuda.is_available()

from pytorch_lightning.plugins import ApexMixedPrecisionPlugin


apex_plugin = ApexMixedPrecisionPlugin(amp_level="O2")
# turn on 16-bit
trainer = Trainer(accelerator="gpu", devices=1, precision=16, plugins=[apex_plugin])

profiler
^^^^^^^^

Expand Down
1 change: 0 additions & 1 deletion docs/source-pytorch/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -398,7 +398,6 @@ def package_list_from_file(file):
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.cli import _JSONARGPARSE_SIGNATURES_AVAILABLE as _JSONARGPARSE_AVAILABLE
from pytorch_lightning.utilities import (
_APEX_AVAILABLE,
_TORCHVISION_AVAILABLE,
)
from pytorch_lightning.loggers.neptune import _NEPTUNE_AVAILABLE
Expand Down
3 changes: 1 addition & 2 deletions docs/source-pytorch/extensions/plugins.rst
Original file line number Diff line number Diff line change
Expand Up @@ -52,15 +52,14 @@ The full list of built-in precision plugins is listed below.
:nosignatures:
:template: classtemplate.rst

ApexMixedPrecisionPlugin
ColossalAIPrecisionPlugin
DeepSpeedPrecisionPlugin
DoublePrecisionPlugin
FullyShardedNativeMixedPrecisionPlugin
FullyShardedNativeNativeMixedPrecisionPlugin
HPUPrecisionPlugin
IPUPrecisionPlugin
NativeMixedPrecisionPlugin
MixedPrecisionPlugin
PrecisionPlugin
ShardedNativeMixedPrecisionPlugin
TPUBf16PrecisionPlugin
Expand Down
2 changes: 1 addition & 1 deletion docs/source-pytorch/model/manual_optimization.rst
Original file line number Diff line number Diff line change
Expand Up @@ -319,4 +319,4 @@ Here is an example using a closure function.
opt.step(closure=closure)

.. warning::
The :class:`~torch.optim.LBFGS` optimizer is not supported for apex AMP, native AMP, IPUs, or DeepSpeed.
The :class:`~torch.optim.LBFGS` optimizer is not supported for AMP, IPUs, or DeepSpeed.
6 changes: 3 additions & 3 deletions src/lightning_fabric/connector.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@
from lightning_fabric.plugins import (
CheckpointIO,
DeepSpeedPrecision,
NativeMixedPrecision,
MixedPrecision,
Precision,
TPUBf16Precision,
TPUPrecision,
Expand Down Expand Up @@ -452,7 +452,7 @@ def _check_and_init_precision(self) -> Precision:
)
return TPUBf16Precision()
if isinstance(self.strategy, DeepSpeedStrategy):
return DeepSpeedPrecision(self._precision_input, amp_type="native", amp_level=None) # type: ignore
return DeepSpeedPrecision(self._precision_input) # type: ignore

if self._precision_input == 32:
return Precision()
Expand All @@ -476,7 +476,7 @@ def _check_and_init_precision(self) -> Precision:

if isinstance(self.strategy, FSDPStrategy):
return FSDPPrecision(precision=self._precision_input, device=device)
return NativeMixedPrecision(precision=self._precision_input, device=device)
return MixedPrecision(precision=self._precision_input, device=device)

raise RuntimeError("No precision set")

Expand Down
4 changes: 2 additions & 2 deletions src/lightning_fabric/plugins/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
from lightning_fabric.plugins.precision.deepspeed import DeepSpeedPrecision
from lightning_fabric.plugins.precision.double import DoublePrecision
from lightning_fabric.plugins.precision.fsdp import FSDPPrecision
from lightning_fabric.plugins.precision.native_amp import NativeMixedPrecision
from lightning_fabric.plugins.precision.native_amp import MixedPrecision
from lightning_fabric.plugins.precision.precision import Precision
from lightning_fabric.plugins.precision.tpu import TPUPrecision
from lightning_fabric.plugins.precision.tpu_bf16 import TPUBf16Precision
Expand All @@ -31,7 +31,7 @@
"Precision",
"DeepSpeedPrecision",
"DoublePrecision",
"NativeMixedPrecision",
"MixedPrecision",
"TPUPrecision",
"TPUBf16Precision",
"FSDPPrecision",
Expand Down
4 changes: 2 additions & 2 deletions src/lightning_fabric/plugins/precision/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,15 +14,15 @@
from lightning_fabric.plugins.precision.deepspeed import DeepSpeedPrecision
from lightning_fabric.plugins.precision.double import DoublePrecision
from lightning_fabric.plugins.precision.fsdp import FSDPPrecision
from lightning_fabric.plugins.precision.native_amp import NativeMixedPrecision
from lightning_fabric.plugins.precision.native_amp import MixedPrecision
from lightning_fabric.plugins.precision.precision import Precision
from lightning_fabric.plugins.precision.tpu import TPUPrecision
from lightning_fabric.plugins.precision.tpu_bf16 import TPUBf16Precision

__all__ = [
"DeepSpeedPrecision",
"DoublePrecision",
"NativeMixedPrecision",
"MixedPrecision",
"Precision",
"TPUPrecision",
"TPUBf16Precision",
Expand Down
24 changes: 3 additions & 21 deletions src/lightning_fabric/plugins/precision/deepspeed.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Optional, TYPE_CHECKING
from typing import Any, TYPE_CHECKING

import torch
from lightning_utilities.core.imports import RequirementCache
Expand All @@ -20,11 +20,10 @@

from lightning_fabric.plugins.precision.precision import Precision
from lightning_fabric.plugins.precision.utils import _convert_fp_tensor
from lightning_fabric.utilities.enums import AMPType, PrecisionType
from lightning_fabric.utilities.enums import PrecisionType
from lightning_fabric.utilities.types import Steppable

_DEEPSPEED_AVAILABLE = RequirementCache("deepspeed")
_APEX_AVAILABLE = RequirementCache("apex")
if TYPE_CHECKING and _DEEPSPEED_AVAILABLE:
import deepspeed

Expand All @@ -34,28 +33,13 @@ class DeepSpeedPrecision(Precision):
Args:
precision: Full precision (32), half precision (16) or bfloat16 precision (bf16).
amp_type: The mixed precision backend to use ("native" or "apex").
amp_level: The optimization level to use (O1, O2, etc...). By default it will be set to "O2"
if ``amp_type`` is set to "apex".
Raises:
MisconfigurationException:
If using ``bfloat16`` precision and ``deepspeed<v0.6``.
ValueError:
If unsupported ``precision`` is provided.
"""

def __init__(self, precision: Literal[16, 32, "bf16"], amp_type: str, amp_level: Optional[str] = None) -> None:
if amp_type == AMPType.APEX:
if not _APEX_AVAILABLE:
raise ModuleNotFoundError(
"You have asked for Apex AMP but `apex` is not installed."
" Install `apex` using this guide: https://github.com/NVIDIA/apex"
)

amp_level = amp_level or "O2"

def __init__(self, precision: Literal[16, 32, "bf16"]) -> None:
supported_precision = (PrecisionType.HALF, PrecisionType.FLOAT, PrecisionType.BFLOAT)
if precision not in supported_precision:
raise ValueError(
Expand All @@ -65,8 +49,6 @@ def __init__(self, precision: Literal[16, 32, "bf16"], amp_type: str, amp_level:

super().__init__()
self.precision = precision
self.amp_type = amp_type
self.amp_level = amp_level

def convert_input(self, data: Tensor) -> Tensor:
precision_to_type = {"bf16": torch.bfloat16, 16: torch.float16, 32: torch.float32}
Expand Down
12 changes: 6 additions & 6 deletions src/lightning_fabric/plugins/precision/fsdp.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,16 +16,16 @@
import torch
from typing_extensions import Literal

from lightning_fabric.plugins.precision.native_amp import NativeMixedPrecision
from lightning_fabric.plugins.precision.native_amp import MixedPrecision
from lightning_fabric.utilities.enums import PrecisionType
from lightning_fabric.utilities.imports import _TORCH_GREATER_EQUAL_1_12

if TYPE_CHECKING:
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision as TorchMixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler


class FSDPPrecision(NativeMixedPrecision):
class FSDPPrecision(MixedPrecision):
"""AMP for Fully Sharded Data Parallel training."""

def __init__(
Expand All @@ -43,16 +43,16 @@ def __init__(
)

@property
def mixed_precision_config(self) -> "MixedPrecision":
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
def mixed_precision_config(self) -> "TorchMixedPrecision":
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision as TorchMixedPrecision

if self.precision == PrecisionType.HALF:
dtype = torch.float16
elif self.precision == PrecisionType.BFLOAT:
dtype = torch.bfloat16
else:
raise ValueError(f"Was unable to infer precision type, received {self.precision!r}.")
return MixedPrecision(
return TorchMixedPrecision(
param_dtype=dtype,
reduce_dtype=dtype,
buffer_dtype=dtype,
Expand Down
Loading

0 comments on commit 9dea1c3

Please sign in to comment.