-
Notifications
You must be signed in to change notification settings - Fork 3.6k
Closed
Description
🐛 Bug
When an error occurs during turning (LR or BS), for example caused by user error in their training_step, the tuner leaves checkpoint files behind in the default_root dir.
To Reproduce
import os
import torch
from torch.utils.data import DataLoader, Dataset
from pytorch_lightning import LightningModule, Trainer
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
class BoringModel(LightningModule):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(32, 2)
self.learning_rate = 0.1
def forward(self, x):
return self.layer(x)
def training_step(self, batch, batch_idx):
loss = self(batch).sum()
self.log("train_loss", loss)
assert False # simulte an error by user
return {"loss": loss}
def configure_optimizers(self):
return torch.optim.SGD(self.layer.parameters(), lr=0.1)
def run():
train_data = DataLoader(RandomDataset(32, 64), batch_size=2)
model = BoringModel()
trainer = Trainer(
default_root_dir=os.getcwd(),
num_sanity_val_steps=0,
max_epochs=1,
enable_model_summary=False,
auto_lr_find=True
)
trainer.tune(model, train_dataloaders=train_data)
if __name__ == "__main__":
run()Expected behavior
No files. We should save to a temporary location or use a tempfile.
Environment
Master 1.7.
Borda