Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix gradient norm tracking for row_log_interval > 1 #3489

Merged
merged 5 commits into from
Sep 15, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

- Fixed overfit_batches which now correctly disables shuffling for the training loader. ([#3501](https://github.com/PyTorchLightning/pytorch-lightning/pull/3501))

- Fixed gradient norm tracking for `row_log_interval > 1` ([#3489](https://github.com/PyTorchLightning/pytorch-lightning/pull/3489))

## [0.9.0] - YYYY-MM-DD

### Added
Expand Down
9 changes: 4 additions & 5 deletions pytorch_lightning/trainer/training_loop.py
Original file line number Diff line number Diff line change
Expand Up @@ -376,13 +376,12 @@ def on_before_backward(self, batch_idx, optimizer):
return grad_norm_dic

def _track_gradient_norm(self, batch_idx):
grad_norm_dic = {}
if batch_idx % self.trainer.row_log_interval == 0:
grad_norm_dict = {}
if (batch_idx + 1) % self.trainer.row_log_interval == 0:
if float(self.trainer.track_grad_norm) > 0:
model = self.trainer.get_model()
grad_norm_dic = model.grad_norm(
self.trainer.track_grad_norm)
return grad_norm_dic
grad_norm_dict = model.grad_norm(self.trainer.track_grad_norm)
return grad_norm_dict

def log_training_step_metrics(self, opt_closure_result, batch_callback_metrics, batch_log_metrics):
# track callback metrics
Expand Down
26 changes: 26 additions & 0 deletions tests/models/test_grad_norm.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import os
from unittest.mock import patch

import numpy as np
import pytest
Expand Down Expand Up @@ -73,3 +74,28 @@ def test_grad_tracking(tmpdir, norm_type, rtol=5e-3):
log, mod = [log[k] for k in common], [mod[k] for k in common]

assert np.allclose(log, mod, rtol=rtol)


@pytest.mark.parametrize("row_log_interval", [1, 2, 3])
def test_grad_tracking_interval(tmpdir, row_log_interval):
""" Test that gradient norms get tracked in the right interval and that everytime the same keys get logged. """
trainer = Trainer(
default_root_dir=tmpdir,
track_grad_norm=2,
row_log_interval=row_log_interval,
max_steps=10,
)

with patch.object(trainer.logger, "log_metrics") as mocked:
model = EvalModelTemplate()
trainer.fit(model)
expected = trainer.global_step // row_log_interval
grad_norm_dicts = []
for _, kwargs in mocked.call_args_list:
metrics = kwargs.get("metrics", {})
grad_norm_dict = {k: v for k, v in metrics.items() if k.startswith("grad_")}
if grad_norm_dict:
grad_norm_dicts.append(grad_norm_dict)

assert len(grad_norm_dicts) == expected
assert all(grad_norm_dicts[0].keys() == g.keys() for g in grad_norm_dicts)