Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Neptune integration #648

Merged
merged 14 commits into from
Jan 14, 2020
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -306,6 +306,7 @@ Lightning also adds a text column with all the hyperparameters for this experime
- [Save a snapshot of all hyperparameters](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#save-a-snapshot-of-all-hyperparameters)
- [Snapshot code for a training run](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#snapshot-code-for-a-training-run)
- [Write logs file to csv every k batches](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#write-logs-file-to-csv-every-k-batches)
- [Logging experiment data to Neptune](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#neptune-support)

#### Training loop

Expand Down
10 changes: 1 addition & 9 deletions docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,6 @@
# The full version, including alpha/beta/rc tags
release = pytorch_lightning.__version__


# -- General configuration ---------------------------------------------------

# If your documentation needs a minimal Sphinx version, state it here.
Expand Down Expand Up @@ -128,7 +127,6 @@
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = None


# -- Options for HTML output -------------------------------------------------

# The theme to use for HTML and HTML Help pages. See the documentation for
Expand Down Expand Up @@ -174,7 +172,6 @@
# Output file base name for HTML help builder.
htmlhelp_basename = project + '-doc'


# -- Options for LaTeX output ------------------------------------------------

latex_elements = {
Expand All @@ -198,7 +195,6 @@
(master_doc, project + '.tex', project + ' Documentation', author, 'manual'),
]


# -- Options for manual page output ------------------------------------------

# One entry per manual page. List of tuples
Expand All @@ -207,7 +203,6 @@
(master_doc, project, project + ' Documentation', [author], 1)
]


# -- Options for Texinfo output ----------------------------------------------

# Grouping the document tree into Texinfo files. List of tuples
Expand All @@ -218,7 +213,6 @@
'One line description of project.', 'Miscellaneous'),
]


# -- Options for Epub output -------------------------------------------------

# Bibliographic Dublin Core info.
Expand All @@ -236,7 +230,6 @@
# A list of files that should not be packed into the epub file.
epub_exclude_files = ['search.html']


# -- Extension configuration -------------------------------------------------

# -- Options for intersphinx extension ---------------------------------------
Expand All @@ -249,7 +242,6 @@
# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = True


# https://github.com/rtfd/readthedocs.org/issues/1139
# I use sphinx-apidoc to auto-generate API documentation for my project.
# Right now I have to commit these auto-generated files to my repository
Expand Down Expand Up @@ -302,7 +294,7 @@ def setup(app):
MOCK_REQUIRE_PACKAGES.append(pkg.rstrip())

# TODO: better parse from package since the import name and package name may differ
MOCK_MANUAL_PACKAGES = ['torch', 'torchvision', 'sklearn', 'test_tube', 'mlflow', 'comet_ml']
MOCK_MANUAL_PACKAGES = ['torch', 'torchvision', 'sklearn', 'test_tube', 'mlflow', 'comet_ml', 'neptune']
autodoc_mock_imports = MOCK_REQUIRE_PACKAGES + MOCK_MANUAL_PACKAGES
# for mod_name in MOCK_REQUIRE_PACKAGES:
# sys.modules[mod_name] = mock.Mock()
Expand Down
5 changes: 5 additions & 0 deletions pytorch_lightning/logging/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -187,3 +187,8 @@ def __init__(self, hparams):
from .comet import CometLogger
except ImportError:
del environ["COMET_DISABLE_AUTO_LOGGING"]

try:
from .neptune import NeptuneLogger
except ImportError:
pass
239 changes: 239 additions & 0 deletions pytorch_lightning/logging/neptune.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,239 @@
"""
Log using `neptune <https://www.neptune.ml>`_

Neptune logger can be used in the online mode or offline (silent) mode.
To log experiment data in online mode, NeptuneLogger requries an API key:

.. code-block:: python

from pytorch_lightning.logging import NeptuneLogger
# arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class

neptune_logger = NeptuneLogger(
api_key=os.environ["NEPTUNE_API_TOKEN"],
project_name="USER_NAME/PROJECT_NAME",
experiment_name="default", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-lightning","mlp"] # Optional,
)
trainer = Trainer(max_epochs=10, logger=neptune_logger)

Use the logger anywhere in you LightningModule as follows:

.. code-block:: python

def train_step(...):
# example
self.logger.experiment.log_metric("acc_train", acc_train) # log metrics
self.logger.experiment.log_image("worse_predictions", prediction_image) # log images
self.logger.experiment.log_artifact("model_checkpoint.pt", prediction_image) # log model checkpoint
self.logger.experiment.whatever_neptune_supports(...)

def any_lightning_module_function_or_hook(...):
self.logger.experiment.log_metric("acc_train", acc_train) # log metrics
self.logger.experiment.log_image("worse_predictions", prediction_image) # log images
self.logger.experiment.log_artifact("model_checkpoint.pt", prediction_image) # log model checkpoint
self.logger.experiment.whatever_neptune_supports(...)

"""

from logging import getLogger

try:
import neptune
except ImportError:
raise ImportError('Missing neptune package. Run pip install neptune-client')
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

pls add ` to the command


from torch import is_tensor

# from .base import LightningLoggerBase, rank_zero_only
from pytorch_lightning.logging.base import LightningLoggerBase, rank_zero_only

logger = getLogger(__name__)


class NeptuneLogger(LightningLoggerBase):
def __init__(self, api_key=None, project_name=None, offline_mode=False,
experiment_name=None, upload_source_files=None,
params=None, properties=None, tags=None, **kwargs):
"""Initialize a neptune.ml logger.
Requires either an API Key (online mode) or a local directory path (offline mode)

:param str|None api_key: Required in online mode. Neputne API token, found on https://neptune.ml.
Read how to get your API key here https://docs.neptune.ml/python-api/tutorials/get-started.html#copy-api-token.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add spaces at the beginning, so it is assigned to the parameters

:param str project_name: Required in online mode. Qualified name of a project in a form of
"namespace/project_name" for example "tom/minst-classification".
If None, the value of NEPTUNE_PROJECT environment variable will be taken.
You need to create the project in https://neptune.ml first.
:param bool offline_mode: Optional default False. If offline_mode=True no logs will be send to neptune.
Usually used for debug purposes.
:param str|None experiment_name: Optional. Editable name of the experiment.
Name is displayed in the experiment’s Details (Metadata section) and in experiments view as a column.
:param list|None upload_source_files: Optional. List of source files to be uploaded.
Must be list of str or single str. Uploaded sources are displayed in the experiment’s Source code tab.
If None is passed, Python file from which experiment was created will be uploaded.
Pass empty list ([]) to upload no files. Unix style pathname pattern expansion is supported.
For example, you can pass '*.py' to upload all python source files from the current directory.
For recursion lookup use '**/*.py' (for Python 3.5 and later). For more information see glob library.
:param dict|None params: Optional. Parameters of the experiment. After experiment creation params are read-only.
Parameters are displayed in the experiment’s Parameters section and each key-value pair can be
viewed in experiments view as a column.
:param dict|None properties: Optional default is {}. Properties of the experiment.
They are editable after experiment is created. Properties are displayed in the experiment’s Details and
each key-value pair can be viewed in experiments view as a column.
:param list|None tags: Optional default []. Must be list of str. Tags of the experiment.
They are editable after experiment is created (see: append_tag() and remove_tag()).
Tags are displayed in the experiment’s Details and can be viewed in experiments view as a column.
"""
super().__init__()
self.api_key = api_key
self.project_name = project_name
self.offline_mode = offline_mode
self.experiment_name = experiment_name
self.upload_source_files = upload_source_files
self.params = params
self.properties = properties
self.tags = tags
self._experiment = None
self._kwargs = kwargs

if offline_mode:
self.mode = "offline"
Backend = neptune.OfflineBackend
self.project_name = "silent/project"
else:
self.mode = "online"
Backend = neptune.HostedNeptuneBackend

logger.info(f"NeptuneLogger will be initialized in {self.mode} mode")

neptune.init(api_token=self.api_key,
project_qualified_name=self.project_name,
backend=Backend())

@property
def experiment(self):
if self._experiment is not None:
return self._experiment
else:
self._experiment = neptune.create_experiment(name=self.experiment_name,
params=self.params,
properties=self.properties,
tags=self.tags,
upload_source_files=self.upload_source_files,
**self._kwargs)
return self._experiment

@rank_zero_only
def log_hyperparams(self, params):
for key, val in vars(params).items():
self.experiment.set_property(f"param__{key}", val)

@rank_zero_only
def log_metrics(self, metrics, step=None):
"""Log metrics (numeric values) in Neptune experiments

:param float metric: Dictionary with metric names as keys and measured quanties as values
:param int|None step: Step number at which the metrics should be recorded, must be strictly increasing
"""

for key, val in metrics.items():
if is_tensor(val):
val = val.cpu().detach()

if step is None:
self.experiment.log_metric(key, val)
else:
self.experiment.log_metric(key, x=step, y=val)

@rank_zero_only
def finalize(self, status):
self.experiment.stop()

@property
def name(self):
if self.mode == "offline":
return "offline-name"
else:
return self.experiment.name

@property
def version(self):
if self.mode == "offline":
return "offline-id-1234"
else:
return self.experiment.id

@rank_zero_only
def log_metric(self, metric_name, metric_value, step=None):
"""Log metrics (numeric values) in Neptune experiments

:param str metric_name: The name of log, i.e. mse, loss, accuracy.
:param str metric_value: The value of the log (data-point).
:param int|None step: Step number at which the metrics should be recorded, must be strictly increasing
"""
if step is None:
self.experiment.log_metric(metric_name, metric_value)
else:
self.experiment.log_metric(metric_name, x=step, y=metric_value)

@rank_zero_only
def log_text(self, log_name, text, step=None):
"""Log text data in Neptune experiment

:param str log_name: The name of log, i.e. mse, my_text_data, timing_info.
:param str text: The value of the log (data-point).
:param int|None step: Step number at which the metrics should be recorded, must be strictly increasing
"""
if step is None:
self.experiment.log_metric(log_name, text)
else:
self.experiment.log_metric(log_name, x=step, y=text)

@rank_zero_only
def log_image(self, log_name, image, step=None):
"""Log image data in Neptune experiment

:param str log_name: The name of log, i.e. bboxes, visualisations, sample_images.
:param str|PIL.Image|matplotlib.figure.Figure image: The value of the log (data-point).
Can be one of the following types: PIL image, matplotlib.figure.Figure, path to image file (str)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add spaces at the beginning, so it is assigned to the paramaters

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this is so more parameters in the docstring...

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think added spaces wherever needed.

Do you mean I should refactor passing neptune-specific parameters as one dictionary or something like that?

:param int|None step: Step number at which the metrics should be recorded, must be strictly increasing

"""
if step is None:
self.experiment.log_image(log_name, image)
else:
self.experiment.log_image(log_name, x=step, y=image)

@rank_zero_only
def log_artifact(self, artifact, destination=None):
"""Save an artifact (file) in Neptune experiment storage.

:param str artifact: A path to the file in local filesystem.
:param str|None destination: Optional default None.
A destination path. If None is passed, an artifact file name will be used.

"""
self.experiment.log_artifact(artifact, destination)

@rank_zero_only
def set_property(self, key, value):
"""Set key-value pair as Neptune experiment property.

:param str key: Property key.
:param obj value: New value of a property.

"""
self.experiment.set_property(key, value)

@rank_zero_only
def append_tags(self, tag, *tags):
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this tag/tags as two variables sound quite strange, rather make it generic and just single var

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The idea here is to support all the following options:

logger.append_tags('resnet')
logger.append_tags('resnet', 'augmentations')
logger.append_tags(['resnet','augmentations'])

But I think for the simplicity I will go with the last option (list).

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

well you can make a simple fork via using single variable:

def append_tags(self, tags):
    if not isinstance(tags, (list, set, tuple)):
        tags = [tags]  # make it as an iterable is if it is not yet
    ...

"""appends tags to neptune experiment

:param str tag: single str or multiple str or list of str.
:param str|list tags: Tag(s) to add to the current experiment.
If str is passed, singe tag is added.
If multiple - comma separated - str are passed, all of them are added as tags.
If list of str is passed, all elements of the list are added as tags.
"""
self.experiment.append_tags(tag, *tags)
1 change: 1 addition & 0 deletions tests/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -8,4 +8,5 @@ check-manifest
# test_tube # already installed in main req.
mlflow
comet_ml
neptune-client
twine==1.13.0
52 changes: 52 additions & 0 deletions tests/test_logging.py
Original file line number Diff line number Diff line change
Expand Up @@ -193,6 +193,58 @@ def test_comet_pickle(tmpdir, monkeypatch):
trainer2.logger.log_metrics({"acc": 1.0})


def test_neptune_logger(tmpdir):
"""Verify that basic functionality of neptune logger works."""
tutils.reset_seed()

try:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

remove this try/except

from pytorch_lightning.logging import NeptuneLogger
except ModuleNotFoundError:
return

hparams = tutils.get_hparams()
model = LightningTestModel(hparams)

logger = NeptuneLogger(offline_mode=True)

trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
train_percent_check=0.01,
logger=logger
)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)

print('result finished')
assert result == 1, "Training failed"


def test_neptune_pickle(tmpdir):
"""Verify that pickling trainer with neptune logger works."""
tutils.reset_seed()

try:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

remove this try/except

from pytorch_lightning.logging import NeptuneLogger
except ModuleNotFoundError:
return

# hparams = tutils.get_hparams()
# model = LightningTestModel(hparams)

logger = NeptuneLogger(offline_mode=True)
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
logger=logger
)

trainer = Trainer(**trainer_options)
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0})


def test_tensorboard_logger(tmpdir):
"""Verify that basic functionality of Tensorboard logger works."""

Expand Down