-
Notifications
You must be signed in to change notification settings - Fork 3.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Supporting Adding DDP Communication Hooks #6736
Supporting Adding DDP Communication Hooks #6736
Conversation
Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags:
…oint_consolidate Update test_all_gather_grad.py
This reverts commit 9d4a2b8.
This reverts commit 0d23d75.
This reverts commit 70fe5da.
This reverts commit a9aae99.
This reverts commit ea74906.
This reverts commit bf70e43.
This reverts commit f172101.
This reverts commit 536c132.
This reverts commit 3a9fde9.
This reverts commit 7a369f4.
This reverts commit 8222dc9.
This reverts commit 6c095b2.
This reverts commit 250d0aa.
This reverts commit 8651d54.
This reverts commit dcdcd29.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM on a high level
don't have access to multi-gpu at the moment so can't test it :(
please see my comments for a few small suggestions for improvements!
tested locally :) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is epic! Thanks!
Minor comment but we use a 120 line length for both code and docs. Can you re-configure your formatter? You can also use our pre-commit setup
ddp_comm_wrapper=default.fp16_compress_wrapper, | ||
) | ||
""" | ||
if not _TORCH_GREATER_EQUAL_1_8: |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Technically it's also available in 1.7.0 right? But protected with an underscore. Do we want to include it or were important improvements done from 1.7 to 1.8?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
encountered import issue when I tried to import torch.distributed.algorithms
for 1.7.0.
complaining ModuleNotFoundError: No module named torch.distributed.algorithms
for conda tests (3.7, 1.7)
also, power SGD is introduced later
pre-commit and pull rebase |
Great work! having the all reduce in fp16 is a nice perf gain that @tchaton and @blefaudeux made me aware of. We should definitely run a few experiments to see what memory/speed/convergence looks like with these comm hooks :) |
just to add some context, it's really interesting for multi-node, for a single node it may not bring much (or slow things down a tiny bit). When used with AMP there's no tradeoff really, the grads are really computed in fp16 anyway so this folds them back to what they were originally (they're upgraded to fp32 when leaving autocast) |
yeah, from our experimental results, for multi-nodes, fp16 compress hook could give 1.5 speed up for XLM-R model not sacrificing the model accuracy, (even for using native AMP). Power SGD one give even bigger gain :) |
@shuyingsunshine21 as a follow up we should add this to https://pytorch-lightning.readthedocs.io/en/latest/benchmarking/performance.html |
Locally when running the special tests (bash tests/special_tests.sh) I get the following error: ====================================================== short test summary info =======================================================
FAILED tests/plugins/test_ddp_plugin_with_comm_hook.py::test_ddp_fp16_compress_comm_hook - AttributeError: 'torch._C._distributed_c...
=================================================== 1 failed, 2 warnings in 5.60s ====================================================
FAILED
============================================================== FAILURES ==============================================================
__________________________________________________ test_ddp_fp16_compress_comm_hook __________________________________________________
tmpdir = local('/tmp/pytest-of-adrian/pytest-33/test_ddp_fp16_compress_comm_ho0')
@RunIf(skip_windows=True, min_torch="1.8.0", min_gpus=2, special=True)
def test_ddp_fp16_compress_comm_hook(tmpdir):
"""Test for DDP FP16 compress hook."""
model = BoringModel()
training_type_plugin = DDPPlugin(
ddp_comm_hook=default.fp16_compress_hook,
sync_batchnorm=True,
)
trainer = Trainer(
max_epochs=1,
gpus=2,
plugins=[training_type_plugin],
default_root_dir=tmpdir,
sync_batchnorm=True,
fast_dev_run=True,
)
trainer.fit(model)
trainer_comm_hook = (
> trainer.accelerator.training_type_plugin._model.get_ddp_logging_data().comm_hook
)
E AttributeError: 'torch._C._distributed_c10d.DDPLoggingData' object has no attribute 'comm_hook' I'm on torch 1.8.1. |
Ah, good catch, I am on 1.9, looks like this attribute is introduced later ... Let me update. |
…ter) to github/third-party/PyTorchLightning/pytorch-lightning Summary: ### New commit log messages ## [UnReleased] - 2021-MM-DD ### Added - Added more explicit exception message when trying to execute `trainer.test()` or `trainer.validate()` with `fast_dev_run=True` ([#6667](Lightning-AI/pytorch-lightning#6667)) - Added `LightningCLI` class to provide simple reproducibility with minimum boilerplate training cli. ([#4492](Lightning-AI/pytorch-lightning#4492)) - Trigger warning when non-metric logged value with multi processes hasn't been reduced ([#6417](Lightning-AI/pytorch-lightning#6417)) - Added `gradient_clip_algorithm` argument to Trainer for gradient clipping by value ([#6123](Lightning-AI/pytorch-lightning#6123)). - Added a way to print to terminal without breaking up the progress bar ([#5470](Lightning-AI/pytorch-lightning#5470)) - Added support to checkpoint after training steps in `ModelCheckpoint` callback ([#6146](Lightning-AI/pytorch-lightning#6146)) - Added `checkpoint` parameter to callback's `on_save_checkpoint` hook ([#6072](Lightning-AI/pytorch-lightning#6072)) - Added `RunningStage.SANITY_CHECKING` ([#4945](Lightning-AI/pytorch-lightning#4945)) - Added `TrainerState.{FITTING,VALIDATING,TESTING,PREDICTING,TUNING}` ([#4945](Lightning-AI/pytorch-lightning#4945)) - Added `Trainer.validate()` method to perform one evaluation epoch over the validation set ([#4948](Lightning-AI/pytorch-lightning#4948)) - Added `LightningEnvironment` for Lightning-specific DDP ([#5915](Lightning-AI/pytorch-lightning#5915)) - Added `teardown()` hook to LightningDataModule ([#4673](Lightning-AI/pytorch-lightning#4673)) - Added `auto_insert_metric_name` parameter to `ModelCheckpoint` ([#6277](Lightning-AI/pytorch-lightning#6277)) - Added arg to `self.log` that enables users to give custom names when dealing with multiple dataloaders ([#6274](Lightning-AI/pytorch-lightning#6274)) - Added `teardown` method to `BaseProfiler` to enable subclasses defining post-profiling steps outside of `__del__` ([#6370](Lightning-AI/pytorch-lightning#6370)) - Added `setup` method to `BaseProfiler` to enable subclasses defining pre-profiling steps for every process ([#6633](Lightning-AI/pytorch-lightning#6633)) - Added no return warning to predict ([#6139](Lightning-AI/pytorch-lightning#6139)) - Added `Trainer.predict` config validation ([#6543](Lightning-AI/pytorch-lightning#6543)) - Added `AbstractProfiler` interface ([#6621](Lightning-AI/pytorch-lightning#6621)) - Added support for including module names for forward in the autograd trace of `PyTorchProfiler` ([#6349](Lightning-AI/pytorch-lightning#6349)) - Added support for the PyTorch 1.8.1 autograd profiler ([#6618](Lightning-AI/pytorch-lightning#6618)) - Added `outputs` parameter to callback's `on_validation_epoch_end` & `on_test_epoch_end` hooks ([#6120](Lightning-AI/pytorch-lightning#6120)) - Added `configure_sharded_model` hook ([#6679](Lightning-AI/pytorch-lightning#6679)) - Added support for `precision=64`, enabling training with double precision ([#6595](Lightning-AI/pytorch-lightning#6595)) - Added support for DDP communication hooks ([#6736](Lightning-AI/pytorch-lightning#6736)) - Added `artifact_location` argument to `MLFlowLogger` which will be passed to the `MlflowClient.create_experiment` call ([#6677](Lightning-AI/pytorch-lightning#6677)) - Added `model` parameter to precision plugins' `clip_gradients` signature ([#6764](Lightning-AI/pytorch-lightning#6764)) ### Changed - Renamed `pytorch_lightning.callbacks.swa` to `pytorch_lightning.callbacks.stochastic_weight_avg` ([#6259](Lightning-AI/pytorch-lightning#6259)) - Refactor `RunningStage` and `TrainerState` usage ([#4945](Lightning-AI/pytorch-lightning#4945)) - Changed `trainer.evaluating` to return `True` if validating or testing ([#4945](Lightning-AI/pytorch-lightning#4945)) - Changed `setup()` and `teardown()` stage argument to take any of `{fit,validate,test,predict}` ([#6386](Lightning-AI/pytorch-lightning#6386)) - Changed profilers to save separate report files per state and rank ([#6621](Lightning-AI/pytorch-lightning#6621)) - Changed `PyTorchProfiler` to use `torch.autograd.profiler.record_function` to record functions ([#6349](Lightning-AI/pytorch-lightning#6349)) ### Deprecated - `period` has been deprecated in favor of `every_n_val_epochs` in the `ModelCheckpoint` callback ([#6146](Lightning-AI/pytorch-lightning#6146)) - Deprecated `trainer.running_sanity_check` in favor of `trainer.sanity_checking` ([#4945](Lightning-AI/pytorch-lightning#4945)) - Deprecated `Profiler(output_filename)` in favor of `dirpath` and `filename` ([#6621](Lightning-AI/pytorch-lightning#6621)) - Deprecated `PytorchProfiler(profiled_functions)` in favor of `record_functions` ([#6349](Lightning-AI/pytorch-lightning#6349)) - Deprecated metrics in favor of `torchmetrics` ([#6505](Lightning-AI/pytorch-lightning#6505), [#6530](Lightning-AI/pytorch-lightning#6530), [#6540](Lightning-AI/pytorch-lightning#6540), [#6547](Lightning-AI/pytorch-lightning#6547), [#6515](Lightning-AI/pytorch-lightning#6515), [#6572](Lightning-AI/pytorch-lightning#6572), [#6573](Lightning-AI/pytorch-lightning#6573), [#6584](Lightning-AI/pytorch-lightning#6584), [#6636](Lightning-AI/pytorch-lightning#6636), [#6637](Lightning-AI/pytorch-lightning#6637), [#6649](Lightning-AI/pytorch-lightning#6649), [#6659](Lightning-AI/pytorch-lightning#6659), ) ### Removed - Removed support for passing a bool value to `profiler` argument of Trainer ([#6164](Lightning-AI/pytorch-lightning#6164)) - Removed no return warning from val/test step ([#6139](Lightning-AI/pytorch-lightning#6139)) - Removed passing a `ModelCheckpoint` instance to `Trainer(checkpoint_callback)` ([#6166](Lightning-AI/pytorch-lightning#6166)) - Removed deprecated Trainer argument `enable_pl_optimizer` and `automatic_optimization` ([#6163](Lightning-AI/pytorch-lightning#6163)) - Removed deprecated metrics ([#6161](Lightning-AI/pytorch-lightning#6161)) * from `pytorch_lightning.metrics.functional.classification` removed `to_onehot`, `to_categorical`, `get_num_classes`, `roc`, `multiclass_roc`, `average_precision`, `precision_recall_curve`, `multiclass_precision_recall_curve` * from `pytorch_lightning.metrics.functional.reduction` removed `reduce`, `class_reduce` - Removed deprecated `ModelCheckpoint` arguments `prefix`, `mode="auto"` ([#6162](Lightning-AI/pytorch-lightning#6162)) - Removed `mode='auto'` from `EarlyStopping` ([#6167](Lightning-AI/pytorch-lightning#6167)) - Removed legacy references for magic keys in the `Result` object ([#6016](Lightning-AI/pytorch-lightning#6016)) - Removed deprecated `LightningModule` `hparams` setter ([#6207](Lightning-AI/pytorch-lightning#6207)) - Removed legacy code to log or include metrics in the progress bar by returning them in a dict with the `"log"/"progress_bar"` magic keys. Use `self.log` instead ([#6734](Lightning-AI/pytorch-lightning#6734)) - Removed `optimizer_idx` argument from `training_step` in manual optimization ([#6093](Lightning-AI/pytorch-lightning#6093)) ### Fixed - Set better defaults for `rank_zero_only.rank` when training is launched with SLURM and torchelastic ([#6802](Lightning-AI/pytorch-lightning#6802)) - Made the `Plugin.reduce` method more consistent across all Plugins to reflect a mean-reduction by default ([#6011](Lightning-AI/pytorch-lightning#6011)) - Move lightning module to correct device type when using LightningDistributedWrapper ([#6070](Lightning-AI/pytorch-lightning#6070)) - Do not print top-k verbose log with `ModelCheckpoint(monitor=None)` ([#6109](Lightning-AI/pytorch-lightning#6109)) - Fixed csv extension check ([#6436](Lightning-AI/pytorch-lightning#6436)) - Fixed `ModelCheckpoint(monitor=None, save_last=True)` not saving checkpoints ([#6136](Lightning-AI/pytorch-lightning#6136)) - Fixed `ModelCheckpoint(save_top_k=0, save_last=True)` not saving the `last` checkpoint ([#6136](Lightning-AI/pytorch-lightning#6136)) - Fixed `.teardown(stage='fit')` getting called during `trainer.test` ([#6386](Lightning-AI/pytorch-lightning#6386)) - Fixed `.on_fit_{start,end}()` getting called during `trainer.test` ([#6386](Lightning-AI/pytorch-lightning#6386)) - Fixed LightningModule `all_gather` on cpu tensors ([#6416](Lightning-AI/pytorch-lightning#6416)) - Fixed torch distributed not available in setup hook for DDP ([#6506](Lightning-AI/pytorch-lightning#6506)) - Fixed `EarlyStopping` logic when `min_epochs` or `min_steps` requirement is not met ([#6705](Lightning-AI/pytorch-lightning#6705)) ## [1.2.7] - 2021-04-06 ### Fixed - Fixed resolve a bug with omegaconf and xm.save ([#6741](Lightning-AI/pytorch-lightning#6741)) - Fixed an issue with IterableDataset when __len__ is not defined ([#6828](Lightning-AI/pytorch-lightning#6828)) - Sanitize None params during pruning ([#6836](Lightning-AI/pytorch-lightning#6836)) - Enforce an epoch scheduler interval when using SWA ([#6588](Lightning-AI/pytorch-lightning#6588)) - Fixed TPU Colab hang issue, post training ([#6816](Lightning-AI/pytorch-lightning#6816)) - Fixed a bug where `TensorBoardLogger` would give a warning and not log correctly to a symbolic link `save_dir` ([#6730](Lightning-AI/pytorch-lightning#6730)) ## [1.2.6] - 2021-03-30 ### Changed - Changed the behavior of `on_epoch_start` to run at the beginning of validation & test epoch ([#6498](Lightning-AI/pytorch-lightning#6498)) ### Removed - Removed legacy code to include `step` dictionary returns in `callback_metrics`. Use `self.log_dict` instead. ([#6682](Lightning-AI/pytorch-lightning#6682)) ### Fixed - Fixed `DummyLogger.log_hyperparams` raising a `TypeError` when running with `fast_dev_run=True` ([#6398](Lightning-AI/pytorch-lightning#6398)) - Fixed error on TPUs when there was no `ModelCheckpoint` ([#6654](Lightning-AI/pytorch-lightning#6654)) - Fixed `trainer.test` freeze on TPUs ([#6654](Lightning-AI/pytorch-lightning#6654)) - Fixed a bug where gradients were disabled after calling `Trainer.predict` ([#6657](Lightning-AI/pytorch-lightning#6657)) - Fixed bug where no TPUs were detected in a TPU pod env ([#6719](Lightning-AI/pytorch-lightning#6719)) ## [1.2.5] - 2021-03-23 ### Changed - Update Gradient Clipping for the TPU Accelerator ([#6576](Lightning-AI/pytorch-lightning#6576)) - Refactored setup for typing friendly ([#6590](Lightning-AI/pytorch-lightning#6590)) ### Fixed - Fixed a bug where `all_gather` would not work correctly with `tpu_cores=8` ([#6587](Lightning-AI/pytorch-lightning#6587)) - Fixed comparing required versions ([#6434](Lightning-AI/pytorch-lightning#6434)) - Fixed duplicate logs appearing in console when using the python logging module ([#6275](Lightning-AI/pytorch-lightning#6275)) - Added Autocast in validation, test and predict modes for Native AMP ([#6565](Lightning-AI/pytorch-lightning#6565)) Reviewed By: shuyingsunshine21 Differential Revision: D27528929 fbshipit-source-id: 311c88f71461c2c79bbf185e28d7a6d683ccc26f
What does this PR do?
Fixes #6727, #643
Before submitting
PR review
Anyone in the community is free to review the PR once the tests have passed.
Before you start reviewing make sure you have read Review guidelines. In short, see the following bullet-list:
Did you have fun?
Make sure you had fun coding 🙃