Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix plateau scheduler stepping on incomplete epoch #8861

Merged
merged 7 commits into from
Aug 13, 2021
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -153,6 +153,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Fixed truncated backprop through time enablement when set as a property on the LightningModule and not the Trainer ([#8804](https://github.com/PyTorchLightning/pytorch-lightning/pull/8804/))


- Fixed plateau scheduler stepping on incomplete epoch ([#8861](https://github.com/PyTorchLightning/pytorch-lightning/pull/8861))


## [1.4.0] - 2021-07-27

### Added
Expand Down
3 changes: 2 additions & 1 deletion pytorch_lightning/loops/epoch/training_epoch_loop.py
Original file line number Diff line number Diff line change
Expand Up @@ -227,7 +227,8 @@ def on_run_end(self) -> List[List[STEP_OUTPUT]]:
self.trainer.call_hook("on_epoch_end")
self.trainer.logger_connector.on_epoch_end()

self.update_lr_schedulers("epoch", update_plateau_schedulers=True)
if self._num_training_batches_reached(self.is_last_batch):
self.update_lr_schedulers("epoch", update_plateau_schedulers=True)
carmocca marked this conversation as resolved.
Show resolved Hide resolved

epoch_output = self._epoch_output
# free memory
Expand Down
35 changes: 31 additions & 4 deletions tests/trainer/optimization/test_optimizers.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@
from pytorch_lightning import Callback, Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import EvalModelTemplate
from tests.helpers.boring_model import BoringModel
from tests.helpers.runif import RunIf

Expand Down Expand Up @@ -79,7 +78,7 @@ def test_reducelronplateau_with_no_monitor_raises(tmpdir):
"""
Test exception when a ReduceLROnPlateau is used with no monitor
"""
model = EvalModelTemplate()
model = BoringModel()
optimizer = optim.Adam(model.parameters())
model.configure_optimizers = lambda: ([optimizer], [optim.lr_scheduler.ReduceLROnPlateau(optimizer)])
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
Expand All @@ -93,7 +92,7 @@ def test_reducelronplateau_with_no_monitor_in_lr_scheduler_dict_raises(tmpdir):
"""
Test exception when lr_scheduler dict has a ReduceLROnPlateau with no monitor
"""
model = EvalModelTemplate()
model = BoringModel()
optimizer = optim.Adam(model.parameters())
model.configure_optimizers = lambda: {
"optimizer": optimizer,
Expand Down Expand Up @@ -380,7 +379,7 @@ def test_lr_scheduler_strict(tmpdir):
"""
Test "strict" support in lr_scheduler dict
"""
model = EvalModelTemplate()
model = BoringModel()
optimizer = optim.Adam(model.parameters())
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer)
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
Expand All @@ -405,6 +404,34 @@ def test_lr_scheduler_strict(tmpdir):
trainer.fit(model)


@pytest.mark.parametrize("complete_epoch", [True, False])
@mock.patch("torch.optim.lr_scheduler.ReduceLROnPlateau.step")
def test_lr_scheduler_strict_incomplete_epoch(step_mock, tmpdir, complete_epoch):
awaelchli marked this conversation as resolved.
Show resolved Hide resolved
"""Tests that plateau scheduler does not attempt to step in an incomplete epoch (stopped early)."""
model = BoringModel()
optimizer = optim.Adam(model.parameters())
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer)
max_epochs = 1 if complete_epoch else None
max_steps = None if complete_epoch else 1
trainer = Trainer(default_root_dir=tmpdir, max_epochs=max_epochs, max_steps=max_steps)

model.configure_optimizers = lambda: {
"optimizer": optimizer,
"lr_scheduler": {"scheduler": scheduler, "monitor": "giraffe", "strict": True},
}

if complete_epoch:
with pytest.raises(
MisconfigurationException,
match=r"ReduceLROnPlateau conditioned on metric .* which is not available\. Available metrics are:",
):
trainer.fit(model)
else:
trainer.fit(model)

assert step_mock.call_count == 0


def test_unknown_configure_optimizers_raises(tmpdir):
"""
Test exception with an unsupported configure_optimizers return
Expand Down