Skip to content

Commit

Permalink
Add RelativeSquaredError (#1765)
Browse files Browse the repository at this point in the history
Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Jirka Borovec <6035284+Borda@users.noreply.github.com>
  • Loading branch information
4 people authored May 11, 2023
1 parent 47c6d1c commit 3ea6062
Show file tree
Hide file tree
Showing 10 changed files with 408 additions and 3 deletions.
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -102,6 +102,9 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
* `DistanceIntersectionOverUnion`


- Added `RelativeSquaredError` metric to regression package ([#1765](https://github.com/Lightning-AI/torchmetrics/pull/1765))


### Changed

- Changed `update_count` and `update_called` from private to public methods ([#1370](https://github.com/Lightning-AI/metrics/pull/1370))
Expand Down
23 changes: 23 additions & 0 deletions docs/source/regression/rse.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
.. customcarditem::
:header: Relative Squared Error
:image: https://pl-flash-data.s3.amazonaws.com/assets/thumbnails/tabular_classification.svg
:tags: Regression

.. include:: ../links.rst

############################
Relative Squared Error (RSE)
############################

Module Interface
________________

.. autoclass:: torchmetrics.RelativeSquaredError
:noindex:
:exclude-members: update, compute

Functional Interface
____________________

.. autofunction:: torchmetrics.functional.relative_squared_error
:noindex:
2 changes: 2 additions & 0 deletions src/torchmetrics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,6 +91,7 @@
MinkowskiDistance,
PearsonCorrCoef,
R2Score,
RelativeSquaredError,
SpearmanCorrCoef,
SymmetricMeanAbsolutePercentageError,
TweedieDevianceScore,
Expand Down Expand Up @@ -190,6 +191,7 @@
"Recall",
"RecallAtFixedPrecision",
"RelativeAverageSpectralError",
"RelativeSquaredError",
"RetrievalFallOut",
"RetrievalHitRate",
"RetrievalMAP",
Expand Down
2 changes: 2 additions & 0 deletions src/torchmetrics/functional/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,7 @@
minkowski_distance,
pearson_corrcoef,
r2_score,
relative_squared_error,
spearman_corrcoef,
symmetric_mean_absolute_percentage_error,
tweedie_deviance_score,
Expand Down Expand Up @@ -190,6 +191,7 @@
"r2_score",
"recall",
"relative_average_spectral_error",
"relative_squared_error",
"retrieval_average_precision",
"retrieval_fall_out",
"retrieval_hit_rate",
Expand Down
2 changes: 2 additions & 0 deletions src/torchmetrics/functional/regression/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
from torchmetrics.functional.regression.mse import mean_squared_error
from torchmetrics.functional.regression.pearson import pearson_corrcoef
from torchmetrics.functional.regression.r2 import r2_score
from torchmetrics.functional.regression.rse import relative_squared_error
from torchmetrics.functional.regression.spearman import spearman_corrcoef
from torchmetrics.functional.regression.symmetric_mape import symmetric_mean_absolute_percentage_error
from torchmetrics.functional.regression.tweedie_deviance import tweedie_deviance_score
Expand All @@ -45,6 +46,7 @@
"mean_absolute_percentage_error",
"minkowski_distance",
"r2_score",
"relative_squared_error",
"spearman_corrcoef",
"symmetric_mean_absolute_percentage_error",
"tweedie_deviance_score",
Expand Down
78 changes: 78 additions & 0 deletions src/torchmetrics/functional/regression/rse.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union

import torch
from torch import Tensor

from torchmetrics.functional.regression.r2 import _r2_score_update


def _relative_squared_error_compute(
sum_squared_obs: Tensor,
sum_obs: Tensor,
sum_squared_error: Tensor,
n_obs: Union[int, Tensor],
squared: bool = True,
) -> Tensor:
"""Computes Relative Squared Error.
Args:
sum_squared_obs: Sum of square of all observations
sum_obs: Sum of all observations
sum_squared_error: Residual sum of squares
n_obs: Number of predictions or observations
squared: Returns RRSE value if set to False.
Example:
>>> target = torch.tensor([[0.5, 1], [-1, 1], [7, -6]])
>>> preds = torch.tensor([[0, 2], [-1, 2], [8, -5]])
>>> # RSE uses the same update function as R2 score.
>>> sum_squared_obs, sum_obs, rss, n_obs = _r2_score_update(preds, target)
>>> _relative_squared_error_compute(sum_squared_obs, sum_obs, rss, n_obs, squared=True)
tensor(0.0632)
"""
epsilon = torch.finfo(sum_squared_error.dtype).eps
rse = sum_squared_error / torch.clamp(sum_squared_obs - sum_obs * sum_obs / n_obs, min=epsilon)
if not squared:
rse = torch.sqrt(rse)
return torch.mean(rse)


def relative_squared_error(preds: Tensor, target: Tensor, squared: bool = True) -> Tensor:
r"""Computes the relative squared error (RSE).
.. math:: \text{RSE} = \frac{\sum_i^N(y_i - \hat{y_i})^2}{\sum_i^N(y_i - \overline{y})^2}
Where :math:`y` is a tensor of target values with mean :math:`\overline{y}`, and
:math:`\hat{y}` is a tensor of predictions.
If `preds` and `targets` are 2D tensors, the RSE is averaged over the second dim.
Args:
preds: estimated labels
target: ground truth labels
squared: returns RRSE value if set to False
Return:
Tensor with RSE
Example:
>>> from torchmetrics.functional.regression import relative_squared_error
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> relative_squared_error(preds, target)
tensor(0.0514)
"""
sum_squared_obs, sum_obs, rss, n_obs = _r2_score_update(preds, target)
return _relative_squared_error_compute(sum_squared_obs, sum_obs, rss, n_obs, squared=squared)
2 changes: 2 additions & 0 deletions src/torchmetrics/regression/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
from torchmetrics.regression.mse import MeanSquaredError
from torchmetrics.regression.pearson import PearsonCorrCoef
from torchmetrics.regression.r2 import R2Score
from torchmetrics.regression.rse import RelativeSquaredError
from torchmetrics.regression.spearman import SpearmanCorrCoef
from torchmetrics.regression.symmetric_mape import SymmetricMeanAbsolutePercentageError
from torchmetrics.regression.tweedie_deviance import TweedieDevianceScore
Expand All @@ -43,6 +44,7 @@
"MeanSquaredError",
"PearsonCorrCoef",
"R2Score",
"RelativeSquaredError",
"SpearmanCorrCoef",
"SymmetricMeanAbsolutePercentageError",
"TweedieDevianceScore",
Expand Down
141 changes: 141 additions & 0 deletions src/torchmetrics/regression/rse.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Optional, Sequence, Union

import torch
from torch import Tensor, tensor

from torchmetrics.functional.regression.r2 import _r2_score_update
from torchmetrics.functional.regression.rse import _relative_squared_error_compute
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["RelativeSquaredError.plot"]


class RelativeSquaredError(Metric):
r"""Computes the relative squared error (RSE).
.. math:: \text{RSE} = \frac{\sum_i^N(y_i - \hat{y_i})^2}{\sum_i^N(y_i - \overline{y})^2}
Where :math:`y` is a tensor of target values with mean :math:`\overline{y}`, and
:math:`\hat{y}` is a tensor of predictions.
If num_outputs > 1, the returned value is averaged over all the outputs.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): Predictions from model in float tensor with shape ``(N,)``
or ``(N, M)`` (multioutput)
- ``target`` (:class:`~torch.Tensor`): Ground truth values in float tensor with shape ``(N,)``
or ``(N, M)`` (multioutput)
As output of ``forward`` and ``compute`` the metric returns the following output:
- ``rse`` (:class:`~torch.Tensor`): A tensor with the RSE score(s)
Args:
num_outputs: Number of outputs in multioutput setting
squared: If True returns RSE value, if False returns RRSE value.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> from torchmetrics.regression import RelativeSquaredError
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> relative_squared_error = RelativeSquaredError()
>>> relative_squared_error(preds, target)
tensor(0.0514)
"""
is_differentiable = True
higher_is_better = False
full_state_update = False
sum_squared_error: Tensor
sum_error: Tensor
residual: Tensor
total: Tensor

def __init__(
self,
num_outputs: int = 1,
squared: bool = True,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)

self.num_outputs = num_outputs

self.add_state("sum_squared_error", default=torch.zeros(self.num_outputs), dist_reduce_fx="sum")
self.add_state("sum_error", default=torch.zeros(self.num_outputs), dist_reduce_fx="sum")
self.add_state("residual", default=torch.zeros(self.num_outputs), dist_reduce_fx="sum")
self.add_state("total", default=tensor(0), dist_reduce_fx="sum")
self.squared = squared

def update(self, preds: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets."""
sum_squared_error, sum_error, residual, total = _r2_score_update(preds, target)

self.sum_squared_error += sum_squared_error
self.sum_error += sum_error
self.residual += residual
self.total += total

def compute(self) -> Tensor:
"""Computes relative squared error over state."""
return _relative_squared_error_compute(
self.sum_squared_error, self.sum_error, self.residual, self.total, squared=self.squared
)

def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import randn
>>> # Example plotting a single value
>>> from torchmetrics.regression import RelativeSquaredError
>>> metric = RelativeSquaredError()
>>> metric.update(randn(10,), randn(10,))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> from torch import randn
>>> # Example plotting multiple values
>>> from torchmetrics.regression import RelativeSquaredError
>>> metric = RelativeSquaredError()
>>> values = []
>>> for _ in range(10):
... values.append(metric(randn(10,), randn(10,)))
>>> fig, ax = metric.plot(values)
"""
return self._plot(val, ax)
Loading

0 comments on commit 3ea6062

Please sign in to comment.