Skip to content

Commit

Permalink
added train step return
Browse files Browse the repository at this point in the history
  • Loading branch information
williamFalcon authored and Borda committed Jun 2, 2020
1 parent 8096568 commit 798090b
Show file tree
Hide file tree
Showing 2 changed files with 162 additions and 1 deletion.
2 changes: 1 addition & 1 deletion pl_bolts/models/self_supervised/simclr/simclr_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,7 @@ def add_model_specific_args(parent_parser):
parser.add_argument('--dataset', type=str, default='cifar10')

(args, _) = parser.parse_known_args()
height = {'cifar10': 32, 'stl10':96, 'imagenet128': 224}[args.dataset]
height = {'cifar10': 32, 'stl10': 96, 'imagenet128': 224}[args.dataset]
parser.add_argument('--input_height', type=int, default=height)

# Data
Expand Down
161 changes: 161 additions & 0 deletions pl_bolts/models/vision/faster_rcnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
"""
This is just the layout for FasterRCNN using lightning
"""
from argparse import ArgumentParser

import torch
import torchvision
from pytorch_lightning import LightningModule, Trainer
from test_tube import HyperOptArgumentParser
from torchvision.models.detection import FasterRCNN
from torchvision.models.detection.rpn import AnchorGenerator

from pl_bolts.models.autoencoders import BasicAE


class BBFasterRCNN(LightningModule):

def __init__(self, pretrained_path):
super().__init__()
self.pretrained_path = pretrained_path
self.output_dim = 800 * 800

# ------------------
# PRE-TRAINED MODEL
# ------------------
ae = BasicAE.load_from_checkpoint(pretrained_path)
ae.freeze()

self.backbone = ae.encoder
self.backbone.c3_only = True
self.backbone.out_channels = 32

# ------------------
# FAST RCNN
# ------------------
anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
aspect_ratios=((0.5, 1.0, 2.0),))

roi_pooler = torchvision.ops.MultiScaleRoIAlign(
featmap_names=['0'], output_size=7, sampling_ratio=2)
self.fast_rcnn = FasterRCNN(
self.backbone,
num_classes=9,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler
)

# for unfreezing encoder later
self.frozen = True

def forward(self, ssr, targets):
losses_dict = self.fast_rcnn(ssr, targets)
return losses_dict

def _run_step(self, batch, batch_idx, step_name):
# images, target and roadimage are tuples of length batchsize
# bb coords in target using (-40, 40) scale
images, raw_target, road_image = batch

# adjust format for FastRCNN
# images: list([3, 800, 800]); target: list( {'boxes': [N, 4], 'labels': [N] } )
# here bb coords are already transformed to (0, 800) range
images, target = self._format_for_fastrcnn(images, raw_target)

# run a forward step
# depending on whether its a train or validation step - losses is dict with different keys
losses = self(images, target)

# in training, the output is a dict of scalars
if step_name == 'train':
loss_classifier = losses['loss_classifier'].double()
loss_box_reg = losses['loss_box_reg'].double()
loss_objectness = losses['loss_objectness'].double()
loss_rpn_box_reg = losses['loss_rpn_box_reg'].double()
loss = loss_classifier + loss_box_reg + loss_objectness + loss_rpn_box_reg
return loss, loss_classifier, loss_box_reg, loss_objectness, loss_rpn_box_reg
else:
# in val, the output is a dic of boxes and losses
# ----------------------
# LOG VALIDATION IMAGES
# ----------------------
if batch_idx % self.hparams.output_img_freq == 0:
# --- log one validation predicted image ---
# [N, 4] - seems to be [100,4]
predicted_coords_0 = losses[0]['boxes']
# transform [N, 4] -> [N, 2, 4]
# note these predictions are on [0, 800] scale
predicted_coords_0 = self._change_to_old_coord_sys(predicted_coords_0)
pred_categories_0 = losses[0]['labels'] # [N]

target_coords_0 = raw_target[0]['bounding_box'] * 10 + 400
# [N, 4] -> [N, 2, 4]
# target_coords_0 = self._change_to_old_coord_sys(target_coords_0)
target_categories_0 = raw_target[0]['category']

def _format_for_fastrcnn(self, images, target):
# split batch into list of single images
# [b, 3, 256, 1836] --> list of length b with elements [3, 256, 1836]
images = list(image.float() for image in images)

target = [{k: v for k, v in t.items()} for t in target]
for d in target:
d['boxes'] = d.pop('bounding_box')
d['labels'] = d.pop('category')

# Change coords to (x0, y0, x1, y1) ie top left and bottom right corners
# TODO: verify
d['boxes'] = self._change_coord_sys(d['boxes']).float()
# num_boxes = d['boxes'].size(0)
# d['boxes'] = d['boxes'][:, :, [0, -1]].reshape(num_boxes, -1).float()

return images, target

def training_step(self, batch, batch_idx):

# unfreeze after so many epochs
if self.current_epoch >= self.hparams.unfreeze_epoch_no and self.frozen:
self.frozen = False
self.backbone.train()

train_loss, loss_classifier, loss_box_reg, loss_objectness, loss_rpn_box_reg = \
self._run_step(batch, batch_idx, step_name='train')
train_tensorboard_logs = {'train_loss': train_loss,
'train_loss_classifier': loss_classifier,
'train_loss_box_reg': loss_box_reg,
'train_loss_objectness': loss_objectness,
'train_loss_rpn_box_reg': loss_rpn_box_reg}

return {'loss': train_loss, 'log': train_tensorboard_logs}

def validation_step(self, batch, batch_idx):
self._run_step(batch, batch_idx, step_name='valid')

def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)

@staticmethod
def add_model_specific_args(parent_parser):
parser = HyperOptArgumentParser(parents=[parent_parser], add_help=False)

# want to optimize this parameter
# parser.opt_list('--batch_size', type=int, default=16, options=[16, 10, 8], tunable=False)
parser.opt_list('--learning_rate', type=float, default=0.001, options=[1e-3, 1e-4, 1e-5], tunable=True)
parser.add_argument('--batch_size', type=int, default=10)
# fixed arguments
parser.add_argument('--output_img_freq', type=int, default=100)
parser.add_argument('--unfreeze_epoch_no', type=int, default=0)

parser.add_argument('--mse_loss', default=False, action='store_true')
return parser


if __name__ == '__main__':
parser = ArgumentParser()
parser = Trainer.add_argparse_args(parser)
parser = BBFasterRCNN.add_model_specific_args(parser)
args = parser.parse_args()

model = BBFasterRCNN(args)
trainer = Trainer.from_argparse_args(args)
trainer.fit(model)

0 comments on commit 798090b

Please sign in to comment.