Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bugfix: batch_size for MNISTDataModule #331

Merged
merged 2 commits into from
Nov 6, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 12 additions & 13 deletions pl_bolts/datamodules/mnist_datamodule.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,6 +76,7 @@ def __init__(
self.num_workers = num_workers
self.normalize = normalize
self.seed = seed
self.batch_size = batch_size

@property
def num_classes(self):
Expand All @@ -92,15 +93,14 @@ def prepare_data(self):
MNIST(self.data_dir, train=True, download=True, transform=transform_lib.ToTensor())
MNIST(self.data_dir, train=False, download=True, transform=transform_lib.ToTensor())

def train_dataloader(self, batch_size=32, transforms=None):
def train_dataloader(self):
"""
MNIST train set removes a subset to use for validation

Args:
batch_size: size of batch
transforms: custom transforms
"""
transforms = transforms or self.train_transforms or self._default_transforms()
transforms = self.default_transforms() if self.train_transforms is None else self.train_transforms

dataset = MNIST(self.data_dir, train=True, download=False, transform=transforms)
train_length = len(dataset)
Expand All @@ -109,55 +109,54 @@ def train_dataloader(self, batch_size=32, transforms=None):
)
loader = DataLoader(
dataset_train,
batch_size=batch_size,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers,
drop_last=True,
pin_memory=True,
)
return loader

def val_dataloader(self, batch_size=32, transforms=None):
def val_dataloader(self):
"""
MNIST val set uses a subset of the training set for validation

Args:
batch_size: size of batch
transforms: custom transforms
"""
transforms = transforms or self.val_transforms or self._default_transforms()
transforms = self.default_transforms() if self.val_transforms is None else self.val_transforms
dataset = MNIST(self.data_dir, train=True, download=False, transform=transforms)
train_length = len(dataset)
_, dataset_val = random_split(
dataset, [train_length - self.val_split, self.val_split], generator=torch.Generator().manual_seed(self.seed)
)
loader = DataLoader(
dataset_val,
batch_size=batch_size,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
drop_last=True,
pin_memory=True,
)
return loader

def test_dataloader(self, batch_size=32, transforms=None):
def test_dataloader(self):
"""
MNIST test set uses the test split

Args:
batch_size: size of batch
transforms: custom transforms
"""
transforms = transforms or self.val_transforms or self._default_transforms()
transforms = self.default_transforms() if self.test_transforms is None else self.test_transforms

dataset = MNIST(self.data_dir, train=False, download=False, transform=transforms)
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=False, num_workers=self.num_workers, drop_last=True, pin_memory=True
dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers, drop_last=True,
pin_memory=True
)
return loader

def _default_transforms(self):
def default_transforms(self):
if self.normalize:
mnist_transforms = transform_lib.Compose(
[transform_lib.ToTensor(), transform_lib.Normalize(mean=(0.5,), std=(0.5,))]
Expand Down