Skip to content

LitYan/aug_models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data augmentation in microscopic images for material data mining

data augmentation strategy
We use pix2pix for image style transfer as augmentation network, have trained augmentation models with different ratio of polycrystalline iron data and generated corresponding synthetic datasets in Google Drive or BaiduNetdisk (access code:rwjr).

Get Started

installation

Clone this repo.

git clone https://github.com/LitYan/aug_models.git
cd aug_models

This code requires PyTorch 1.1 and python 3+. Please install dependencies by

pip install -r requirements.txt

And you would need an NVIDIA machine with 4 GTX 1080Ti GPUs or 4 Telsa V100 GPUs.

Download Datasets

We used a iron crystal dataset. We have opened up the experimental datasets as needed. Please download them on the respective webpages. we uploaded most of data in Google Drive due to the space limitation , and uploaded all the data in BaiduNetdisk.

  1. Google Drive
  2. BaiduNetdisk (access code:5hsw)

Preparing iron crystal Dataset. In particular, you will need to download real_data folder and synthetic_data folder. The real images and labels have already been divided into train, val and test set. In addition,the synthctic images and labels should be placed in the train set. To do this, save them in './datasets', and run

cd datasets
mv real_data/* ./
mv synthetic_data/* ./train
for z in *.zip ./*/*.zip ./*/*/*.zip; do unzip $z -d $(dirname $z); done
rm -r real_data synthetic_data
cd ../

Applying in Image segmentations

Once the dataset is ready, these synthetic data can be applied in image segmentation tasks as data augmentation for real data like we did in examples.ipynb.

  • train, for example.
python ./scripts/train.py --net unet --train_type 'mix' --gpu_ids 0,1 \
--dataroot './datasets/' --batch_size 8 \
--train_img_dir_real 'train/real_images' \
--train_label_dir_real 'train/real_labels' \
--train_img_list_real './datasets/train/records_txt/real_5.txt' \
--train_img_dir_syn 'train/syn_images/iron_label2real_pix2pix_real_5/latest' \
--train_label_dir_syn 'train/syn_labels' \
--val_img_dir 'val/real_images' \
--val_label_dir 'val/real_labels' \
--checkpoints_dir './ckpts/seg_models' \
--name 'model_real_5_mix_syn' \
--display_env 'model_real_5_mix_syn'

There are many options you can specify. Please use python train.py --help. The specified options are printed to the console. To specify the number of GPUs to utilize, use --gpu_ids.If you want to use the first and second GPUs, use --gpu_ids 0,1.

  • test
python ./scripts/test.py --net unet --name 'model_real_5_mix_syn'\
--checkpoints_dir './ckpts/seg_models/' \
--dataroot './datasets/test/' \
--test_img_dir 'real_images' \
--test_label_dir 'real_labels' \
--epoch 'epoch_4_7200' --results_dir './results/' --gpu_ids 0

Use --results_dir to specify the output directory. --epoch will specify the checkpoint to load.

  • Our pretrained models

Download the pth files of pretrained models from the Google Drive or BaiduNetdisk(access code:8mg7), save them in './ckpts/seg_models', and run

python ./scripts/test.py --net unet --name 'model_real_5_mix_syn'\
--checkpoints_dir './ckpts/seg_models/' \
--dataroot './datasets/test/' \
--test_img_dir 'real_images' \
--test_label_dir 'real_labels' \
--epoch 'epoch_4_7200' --results_dir './results/' --gpu_ids 0

How to generate a synthetic dataset

  • Generating images Using Pretrained Models

The synthetic images can be generated using pretrained models. Download the pth files of pretrained models from the Google Drive or BaiduNetdisk(access code:m425), save them in './ckpts/aug_models', and run

python ./scripts/generate_samples.py  --name iron_label2real_pix2pix_real_5  --num_test 28800 \
--gpu_ids 0 --batch_size 1 --checkpoints_dir './ckpts/aug_models/' \
--dataroot './datasets/' --phase 'train' --label_dir 'syn_labels' \
--results_dir './datasets/train/syn_images'  --epoch 'latest'
  • training new models, for example.
python ./scripts/train_pix2pix.py   --name iron_label2real_pix2pix_real_5 \
--gpu_ids 0,1 --batch_size 8 --checkpoints_dir './ckpts/aug_models' \
--dataroot './datasets/' --phase 'train' --label_dir 'real_labels' --image_dir 'real_images' \
--record_txt './datasets/train/records_txt/real_5.txt' \
--display_env 'real_5'

Code Structure

  • scripts/train.py, scripts/test.py: the entry point of training and testing for image segmentation.
  • scripts/train_pix2pix.py, scripts/generate_samples.py: the entry point of training and testing for image style transfer.
  • scripts/check_paired_dataset.py: check dataset and plot paired images and labels.
  • scripts/auto_segmentations.py: The commonly used auto image segmentations by threshold, morphology or edge detection.
  • models/pix2pix_model.py: creates the augmentation networks.
  • models/unet_model.py: creates the segmentation networks.
  • models/networks/: defines the architecture of all models.
  • options/: creates option lists using argparse package.
  • data/: defines the class for loading images and label maps.

This code structure borrows heavily from pytorch-CycleGAN-and-pix2pix

Citation

If you use it successfully for your research please be so kind to cite the paper.

Ma, B., Wei, X., Liu, C. et al. Data augmentation in microscopic images for material data mining. npj Comput Mater 6, 125 (2020). https://doi.org/10.1038/s41524-020-00392-6

Acknowledgement

The authors acknowledge the financial support from the National Key Research and Development Program of China (No. 2016YFB0700500).

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published