Skip to content

Commit

Permalink
Update Herbramd_bij.lean
Browse files Browse the repository at this point in the history
  • Loading branch information
Akwardbro committed Sep 4, 2024
1 parent 659afe0 commit 238d17c
Showing 1 changed file with 13 additions and 12 deletions.
25 changes: 13 additions & 12 deletions RamificationGroup/Herbramd_bij.lean
Original file line number Diff line number Diff line change
Expand Up @@ -68,8 +68,8 @@ theorem phi_linear_section_aux {n : ℤ} {x : ℚ} (hx : n ≤ x ∧ x < n + 1)
simp only [ceil_intCast, ceil_add_one, add_sub_cancel_right, tsub_le_iff_right,le_add_iff_nonneg_right, zero_le_one]
intro i hi1 hi2
apply le_of_lt
sorry
--apply Ramification_Group_card_pos
convert Ramification_Group_card_pos K L (u := i)
exact Eq.symm (ceil_intCast i)
_ = (1 / Nat.card G(L/K)_[0]) * (Nat.card G(L/K)_[(n + 1)]) * (x - n) := by
simp only [ceil_add_one, ceil_intCast, add_sub_cancel_right, cast_max, cast_zero, cast_sub, cast_one, max_eq_right hn]
have hn' : 0 ≤ (n : ℚ) - 1 := by
Expand Down Expand Up @@ -173,8 +173,8 @@ theorem phi_Bijective_section_aux {n : ℤ} {gen : 𝒪[L]} (hgen : Algebra.adjo
theorem card_of_Ramigroup_gt_one {n : ℤ} : 1 ≤ Nat.card G(L/K)_[n] := by
refine Nat.one_le_iff_ne_zero.mpr ?_
apply ne_of_gt
sorry
--apply Ramification_Group_card_pos
convert Ramification_Group_card_pos K L (u := n)
exact Eq.symm (ceil_intCast n)

theorem id_le_phi {x : ℚ} (hx : 0 < x) : (1 / Nat.card G(L/K)_[0]) * x ≤ phi K L x := by
rw [phi_eq_sum_card K L hx]
Expand All @@ -191,8 +191,7 @@ theorem id_le_phi {x : ℚ} (hx : 0 < x) : (1 / Nat.card G(L/K)_[0]) * x ≤ phi
rw [← Nat.cast_le (α := ℤ), Int.toNat_of_nonneg, Nat.cast_one]
<;> linarith [hxc]
simp only [one_div, inv_pos, Nat.cast_pos]
--apply Ramification_Group_card_pos
sorry
apply Ramification_Group_card_pos K L (u := 0)
· apply (mul_le_mul_left ?_).2
apply Rat.add_le_add_left.2
apply (mul_le_mul_left ?_).2
Expand All @@ -204,17 +203,15 @@ theorem id_le_phi {x : ℚ} (hx : 0 < x) : (1 / Nat.card G(L/K)_[0]) * x ≤ phi
· linarith [Int.ceil_lt_add_one x]
refine one_div_pos.mpr ?_
simp only [Nat.cast_pos]
sorry
--apply Ramification_Group_card_pos
apply Ramification_Group_card_pos K L (u := 0)
· apply (mul_le_mul_left ?_).2
rw [add_le_add_iff_right, Nat.cast_le]
apply Finset.sum_le_sum
intro i hi
apply card_of_Ramigroup_gt_one
refine one_div_pos.mpr ?_
simp only [Nat.cast_pos]
sorry
--apply Ramification_Group_card_pos
apply Ramification_Group_card_pos K L (u := 0)

theorem phi_infty_up_aux {x : ℚ} : ∃ y, x ≤ phi K L y := by
by_cases hc : 0 < x
Expand Down Expand Up @@ -294,8 +291,12 @@ theorem phi_infty_aux (y : ℚ) : ∃ n : ℤ, phi K L n ≤ y ∧ y < phi K L (
apply lt_of_le_of_ne; apply Int.le_ceil; exact hc
· apply hz ⌈n⌉
absurd hq; push_neg;
sorry
--apply phi_infty_up_aux
obtain ⟨n, hn⟩ := phi_infty_up_aux K L (x := y)
use n + 1
apply lt_of_le_of_lt (b := phi K L n)
exact hn
apply phi_strictMono
linarith

theorem phi_Bijective_aux {gen : 𝒪[L]} (hgen : Algebra.adjoin 𝒪[K] {gen} = ⊤) : Function.Bijective (phi K L) := by
constructor
Expand Down

0 comments on commit 238d17c

Please sign in to comment.