Skip to content

Commit

Permalink
Update Upper_phiComp.lean
Browse files Browse the repository at this point in the history
  • Loading branch information
Akwardbro committed Sep 12, 2024
1 parent 3c9a94a commit e838641
Showing 1 changed file with 28 additions and 21 deletions.
49 changes: 28 additions & 21 deletions RamificationGroup/Upper_phiComp.lean
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,9 @@ theorem AlgEquiv.restrictNormalHom_restrictScalarsHom {x : (L ≃ₐ[K'] L)} : A
rw [← algebraMap]
exact rfl
simp only [toAlgHom_eq_coe, toRingHom_eq_coe, toAlgHom_toRingHom, h2, commutes]

simp only [← h2, toAlgHom_eq_coe, toRingHom_eq_coe, toAlgHom_toRingHom, Subtype.coe_eta]
rw [← h1]
simp only [symm_apply_apply]
-- have h1 : ∀ k : K', (ofInjectiveField (IsScalarTower.toAlgHom K K' L)) k = algebraMap K' (IsScalarTower.toAlgHom K K' L).range k := by
-- intro k
-- unfold algebraMap
Expand All @@ -158,26 +160,31 @@ theorem AlgEquiv.restrictNormalHom_restrictScalarsHom {x : (L ≃ₐ[K'] L)} : A
-- intro k
-- rw [Algebra.algebraMap_eq_smul_one, Algebra.algebraMap_eq_smul_one]
-- sorry
simp only [Algebra.algebraMap_eq_smul_one]
-- have h3 : (1 : (IsScalarTower.toAlgHom K K' L).range) = (1 : L) := rfl
haveI : Algebra K' (IsScalarTower.toAlgHom K K' L).range := by
refine (ofInjectiveField (IsScalarTower.toAlgHom K K' L)).toAlgHom.toAlgebra
have h4 : t • (1 : L) ∈ (IsScalarTower.toAlgHom K K' L).range := by
simp only [mem_range, IsScalarTower.coe_toAlgHom']
use t
apply Algebra.algebraMap_eq_smul_one
have h5 : (ofInjectiveField (IsScalarTower.toAlgHom K K' L)).symm ⟨t • (1 : L), h4⟩ = (ofInjectiveField (IsScalarTower.toAlgHom K K' L)).symm (t • (1 : (IsScalarTower.toAlgHom K K' L).range)) := by
refine AlgEquiv.congr_arg ?_
refine SetCoe.ext ?_
simp only
-- have : (↑(t • (1 : ((IsScalarTower.toAlgHom K K' L).range))) : L) = (t • ↑((1 : ((IsScalarTower.toAlgHom K K' L).range)) : L)) := by
sorry
have h6 : algebraMap K' _ t = (ofInjectiveField (IsScalarTower.toAlgHom K K' L)) t := by
rw [h1, ← algebraMap]
congr
sorry
rw [h5, ← Algebra.algebraMap_eq_smul_one, h6]
exact symm_apply_apply (ofInjectiveField (IsScalarTower.toAlgHom K K' L)) t

-- simp only [Algebra.algebraMap_eq_smul_one]

-- -- have h3 : (1 : (IsScalarTower.toAlgHom K K' L).range) = (1 : L) :=

-- haveI : Algebra K' (IsScalarTower.toAlgHom K K' L).range := by
-- refine (ofInjectiveField (IsScalarTower.toAlgHom K K' L)).toAlgHom.toAlgebra
-- have h4 : t • (1 : L) ∈ (IsScalarTower.toAlgHom K K' L).range := by
-- simp only [mem_range, IsScalarTower.coe_toAlgHom']
-- use t
-- apply Algebra.algebraMap_eq_smul_one
-- have h5 : (ofInjectiveField (IsScalarTower.toAlgHom K K' L)).symm ⟨t • (1 : L), h4⟩ = (ofInjectiveField (IsScalarTower.toAlgHom K K' L)).symm (t • (1 : (IsScalarTower.toAlgHom K K' L).range)) := by
-- refine AlgEquiv.congr_arg ?_
-- refine SetCoe.ext ?_
-- simp only

-- -- have : (↑(t • (1 : ((IsScalarTower.toAlgHom K K' L).range))) : L) = (t • ↑((1 : ((IsScalarTower.toAlgHom K K' L).range)) : L)) := by
-- sorry

-- have h6 : algebraMap K' _ t = (ofInjectiveField (IsScalarTower.toAlgHom K K' L)) t := by
-- rw [h1, ← algebraMap]
-- congr
-- sorry
-- rw [h5, ← Algebra.algebraMap_eq_smul_one, h6]
-- exact symm_apply_apply (ofInjectiveField (IsScalarTower.toAlgHom K K' L)) t

--simp only [_root_.map_one, smul_eq_mul, mul_one]
--rw [map_smul (ofInjectiveField (IsScalarTower.toAlgHom K K' L)).symm t (1 : L)]
Expand Down

0 comments on commit e838641

Please sign in to comment.